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Abstract

We consider the C∗-algebra generated by Toeplitz operators acting on the Bergman
space over the upper half-plane whose symbols depend on the imaginary part of the
argument only. Such algebra is known to be commutative, and is isometrically iso-
morphic to an algebra of bounded complex-valued functions on the positive half-line.
In the paper we prove that the latter algebra consists of all bounded functions f that
are very slowly oscillating in the sense that the composition of f with the exponential
function is uniformly continuous or, in other words,

lim
x
y
→1

∣∣f(x)− f(y)
∣∣ = 0.
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1 Introduction

The paper is devoted to the description of a certain class of Toeplitz operators acting on the
Bergman space over the upper half-plane and of the C∗-algebra generated by them.

Let Π = {z = x + iy ∈ C | y > 0} be the upper half-plane, and let dµ = dxdy be
the standard Lebesgue plane measure on Π. Recall that the Bergman space A2(Π) is the
(closed) subspace of L2(Π, dµ) which consists of all function analytic in Π. It is well known
that A2(Π) is a reproducing kernel Hilbert space whose (Bergman) reproducing kernel has
the form

KΠ,w(z) = − 1

π(w − z)2
;

thus the Bergman (orthogonal) projection of L2(Π, dµ) onto A2(Π) is given by

(Pf)(w) = 〈f,KΠ,w〉.

Given a function g ∈ L∞(Π), the Toeplitz operator Tg : A2(Π) → A2(Π) with generating
symbol g is defined by Tgf = P (gf).

One of the phenomena in the theory of Toeplitz operators on the Bergman space is
that (contrary to the Hardy space case) there exists a rich family of symbols that generate
commutative algebras of Toeplitz operators (see for details [13, 14]). There are three model
classes of such symbols: elliptic, which is realized by radial symbols, functions depending on
|z|, on the unit disk, parabolic, which is realized by symbols depending on y = Im(z) on the
upper half-plane, and hyperbolic, which is realized by homogeneous of order zero symbols on
the upper half-plane. All other classes of symbols, that generate commutative algebras of
Toeplitz operators, are obtained from the above three model classes by means of the Möbius
transformations.

In each case of a commutative algebra of Toeplitz operators there is an (explicitly defined)
unitary operator R that reduces each Toeplitz operator Ta from the algebra to a certain
(again explicitly given) multiplication operator by γa, being a function (in the parabolic
and hyperbolic cases), or a sequence (in the elliptic case). This “spectral” function (or
sequence) γa “carries” many substantial properties of corresponding Toeplitz operators, such
as boundedness, norm, compactness, spectrum, essential spectrum, etc.
A very important task to be done in this connection is to describe the properties of such
“spectral” functions and algebras generated by them, understanding thus in more detail the
properties of Toeplitz operators and algebras generated by them.

The first essential step in this direction was done by Suárez [9, 10], who proved, in
particular, that the set of Toeplitz operators with bounded radial symbols (the elliptic case)
is dense in the C∗-algebra generated by these operators, and that the l∞-closure of the set of
corresponding “spectral” sequences coincides with the l∞-closure of a certain set, which he
denotes by d1 and which is commonly used in Tauberian theory. Then in [4] it was shown
that this closure coincides with the C∗-algebra of all slowly oscillating sequences introduced

2



by Schmidt [7, Definition 10], i.e., of all bounded sequences x = (xn)∞n=0 such that

lim
m+1
n+1
→1
|xm − xn| = 0,

which gives thus an isometric characterization of the elliptic case commutative algebra.
In this paper we study the commutative C∗-algebra VT (L∞) generated by Toeplitz opera-

tors of the model parabolic case, i.e., by Toeplitz operators with bounded symbols depending
on y = Im(z) (we call such symbols vertical). The main result of the paper states that the
set of Toeplitz operators with bounded vertical symbols is dense in the above C∗-algebra,
and that the algebra VT (L∞) itself is isometrically isomorphic to the (introduced in the
paper) C∗-algebra VSO(R+) of very slowly oscillating functions, the functions that are uni-
formly continuous with respect to the logarithmic metric ρ(x, y) = | ln(x)− ln(y)| on R+ or,
equivalently, the functions satisfying the condition

lim
x
y
→1

∣∣f(x)− f(y)
∣∣ = 0.

The paper is organized as follows. In Sections 2 and 3 we give various equivalent descriptions
of vertical operators (operators that are invariant under horizontal shifts) and of vertical
Toeplitz operators. In Sections 4 and 5 we introduce the algebra VSO(R+) and prove the
above stated main result on density. In Section 6 we give an example of a bounded Toeplitz
operator Ta with unbounded vertical symbol a whose “spectral” function γa does not belong
to the algebra VSO(R+). This means that in spite of its boundedness Ta does not belong
to the C∗-algebra generated by Toeplitz operators with bounded vertical symbols. In other
words, admitting bounded Toeplitz operators with unbounded symbol we enlarge the algebra
VT (L∞).

Note that the technique used in the paper for the parabolic case is more simple and
efficient than the general one of [9, 10]. Instead of the n-Berezin transform (a special kind of
an approximative unit introduced and used by Suárez), we use another approximative unit
based on a certain Dirac sequence.

2 Vertical operators

Let L(A2(Π)) be the algebra of all linear bounded operators acting on the Bergman space
A2(Π). Given h ∈ R, let Hh ∈ L(A2(Π)) be the horizontal translation operator defined by

Hhf(z) := f(z − h).

We call an operator S ∈ L(A2(Π)) vertical (or horizontal translation invariant) if it com-
mutes with all horizontal translation operators:

∀h ∈ R, HhS = SHh.
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In this section we find a criterion for an operator from A2(Π) to be vertical. First we
recall some known facts on translation invariant operators on the real line.

Introduce the standard Fourier transform

(Ff)(s) :=
1√
2π

∫
R

e−ist f(t) dt,

being a unitary operator on L2(R).
For each h ∈ R, the translation operator τh : L2(R)→ L2(R) is defined by

τhf(s) := f(s− h).

An operator S on L2(R) is called translation invariant if τhS = Sτh, for all h ∈ R. It is well
known (see, for example, [5, Theorem 2.5.10]) that an operator S on L2(R) is translation
invariant if and only if it is a convolution operator, i.e., if and only if there exists a function
σ ∈ L∞(R) such that

S = F−1MσF. (2.1)

We introduce as well the associated multiplication by a character operator MΘhf(s) :=
Θh(s)f(s), where Θh(s) := eish.

Note that τh and MΘ−h are related via the Fourier transform,

MΘ−hF = Fτh. (2.2)

Lemma 2.1. Let M ∈ L(L2(R)). The following conditions are equivalent:

(a) M is invariant under multiplication by Θh for all h ∈ R:

MMΘh = MΘhM.

(b) M is the multiplication operator by a bounded measurable function:

∃σ ∈ L∞(R) such that M = Mσ.

Proof. The part (b)⇒(a) is trivial: MσMΘh = MσΘh = MΘhMσ. The implication (a)⇒(b)
follows from the relation (2.2) and the result about the translation invariant operators cited
above.

Old proof. Assuming (a), by (2.2) we have

F−1MFτh = F−1MMΘ−hF = F−1MΘ−hMF = τhF
−1MF,

which implies that F−1MF commutes with translations. Then (2.1) implies

F−1MF = F−1MσF.

Since F is unitary, (b) holds.
Conversely, if (b) holds, then MσMΘh = MσΘh = MΘhMσ.
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Let Θ+
h denote the restriction of Θh to R+. The following lemma states that an operator

on L2(R+) commutes with MΘ+
h

if and only if it is a multiplication operator.

Lemma 2.2. Let M ∈ L(L2(R+)). The following conditions are equivalent:

(a) M is invariant under multiplication by Θ+
h for all h ∈ R:

MMΘ+
h

= MΘ+
h
M.

(b) M is the multiplication operator by a bounded function:

∃σ ∈ L∞(R+) such that M = Mσ.

Proof. To prove that (a) implies (b), define the restriction operator

P : L2(R)→ L2(R+), g 7→ g|R+ ,

and the zero extension operator

J : L2(R+)→ L2(R), Jf(x) :=

{
f(x) if x > 0,

0 if x ≤ 0.

For every h ∈ R the following equalities hold:

JMΘ+
h

= MΘhJ, PMΘh = MΘ+
h
P.

If (a) holds, then the operator JMP is invariant under multiplication by Θh, for all h ∈ R:

JMPMΘh = JMMΘ+
h
P = JMΘ+

h
MP = MΘhJMP,

and by Lemma 2.2 there exists a function σ1 ∈ L∞(R) such that JMP = Mσ1 . Set σ = σ1|R+ .
Then for all f ∈ L2(R+) and all x ∈ R+,

(Mσf)(x) = σ(x)f(x) = σ1(x)(Jf)(x) = (Mσ1Jf)(x)

= (JMPJf)(x) = (JMf)(x) = (Mf)(x),

and (b) holds. The implication (b)⇒(a) follows directly, as in the previous lemma.

The Berezin transform [1, 2] of an operator S ∈ L(A2(Π)) is the function Π→ C defined
by

B(S)(w) :=
〈SKΠ,w, KΠ,w〉
〈KΠ,w, KΠ,w〉

.
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Following [12, Section 2] (see also [14, Section 3.1]), we introduce the isometric isomorphism
R : A2(Π)→ L2(R+),

(Rφ)(x) :=

√
x√
π

∫
Π

φ(w) e−iwx dµ(w).

The operator R is unitary, and its inverse R∗ : L2(R+)→ A2(Π) is given by

(R∗f)(z) =
1√
π

∫
R+

√
ξf(ξ) eizξ dξ.

The next theorem gives a criterion for an operator to be vertical, and is an analogue of the
Zorboska result [15] for radial operators.

Theorem 2.3. Let S ∈ L(A2(Π)). The following conditions are equivalent:

(a) S is invariant under horizontal shifts:

∀h ∈ R SHh = HhS.

(b) RSR∗ is invariant under multiplication by Θ+
h for all h ∈ R:

∀h ∈ R RSR∗MΘ+
h

= MΘ+
h
RSR∗.

(c) There exists a function σ ∈ L∞(R+) such that

S = R∗MσR.

(d) The Berezin transform of S is a vertical function, i.e., depends on Im(w) only.

Proof. (a) ⇒ (b). Follows from the formulas R∗MΘ+
h

= HhR
∗ and RHh = MΘ+

h
R.

(b) ⇒ (c). Follows from Lemma 2.2.
(c) ⇒ (d). Using the residue theorem we get

(RKΠ,w)(x) = −i
√
x√
π

e−iRe(w)x e− Im(w)x .

Therefore

B(S)(w) =
〈MσRKΠ,w, RKΠ,w〉
〈KΠ,w, KΠ,w〉

= (2 Im(w))2

∫ +∞

0

xσ(x) e−2 Im(w)x dx,

and B(S)(w) depends only on Im(w).
(d) ⇒ (a). Compute the Berezin transform of H−hSHh using the formula HhKΠ,w =

KΠ,w+h:

B(H−hSHh)(w) =
〈SHhKΠ,w, HhKΠ,w〉

‖KΠ,w‖2
=
〈SKΠ,w+h, KΠ,w+h〉
‖KΠ,w+h‖2

= B(S)(w + h) = B(S)(w).

Since the Berezin transform is injective [8], H−hSHh = S.

Corollary 2.4. The set of all vertical operators on L(A2(Π)) is a commutative C∗-algebra
which is isometrically isomorphic to L∞(R+).
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3 Vertical Toeplitz operators

In this section we establish necessary and sufficient conditions for a Toeplitz operator to be
vertical.

Lemma 3.1. Let g ∈ L∞(Π). Then Tg is zero if and only if g = 0 almost everywhere.

Proof. The corresponding result for Toeplitz operators on the Bergman space on the unit
disk is well known, see, for example, [14, Theorem 2.8.2]. To extend it to the upper half-plane
case, we introduce the Cayley transform

ψ : Π→ D, w 7−→ w − i
w + i

,

the corresponding unitary operator

U : A2(D)→ A2(Π), f 7−→ (f ◦ ψ)ψ′,

and observe that U∗TgU = Tg◦ψ−1 .

The next elementary lemma gives a criterion for a function on R to be almost everywhere
constant. We use there the Lebesgue measure in Rn for various dimensions (n = 1, 2, 3),
indicating the dimension as a subindex: µn.

Lemma 3.2. Let f : R → C be a measurable function. Then the following conditions are
equivalent:

(a) There exists a constant c ∈ C such that f(x) = c for almost all x ∈ R.

(b) µ2(D) = 0, where D :=
{

(x, y) ∈ R2 | f(x) 6= f(y)
}

.

(c) µ1(Dx) = 0 for almost all x ∈ R, where Dx :=
{
y ∈ R | f(x) 6= f(y)

}
.

Proof. (a)⇒(b). Let C = {x ∈ R | f(x) 6= c}. The condition (a) means that µ1(C) = 0.
Since D ⊂ (C × R) ∪ (R× C), we obtain µ2(D) = 0.

(b)⇒(c). Apply Tonelli’s theorem to the characteristic function of D.

(c)⇒(a). Choose a point x0 ∈ R such that µ1(Dx0) = 0 and set c := f(x0). Then f = c
almost everywhere.

Old proof of (b)⇒(c). Denote by Φ the characteristic function of D. By Tonelli’s theorem,∫
R
µ1(Dx) dx =

∫
R

(∫
R

Φ(x, y) dy

)
dx =

∫
R2

Φ dµ = µ2(D) = 0,

and µ1(Dx) = 0 for almost all x ∈ R.
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Proposition 3.3. Let g ∈ L∞(Π). The operator Tg is vertical if and only if there exists a
function a ∈ L∞(R+) such that g(w) = a(Im(w)) for almost every w ∈ Π.

Proof. Sufficiency. For every h ∈ R, define gh : Π → C by gh(w) = g(w + h). Then for
almost all w ∈ C

gh(w) = g(w + h) = a(Im(w + h)) = a(Im(w)) = g(w).

Applying the formula H−hTgHh = Tgh we see that Tg is invariant with respect to horizontal
translations.

Necessity. Since Tg is vertical, for every h ∈ R we have Tg = H−hTgHh = Tgh . By Lemma
3.1, g = gh almost everywhere. It means that for all h ∈ R the equality µ2(Eh) = 0 holds
where

Eh :=
{

(u, v) ∈ R2 | g(u+ h+ iv) 6= g(u+ iv)
}
.

Define Λ: R2 × R+ → C by

Λ(u, x, v) :=

{
0, g(x+ iv) = g(u+ iv);

1, g(x+ iv) 6= g(u+ iv).

Then for all h ∈ R {
(u, v) ∈ Π | Λ(u, u+ h, v) 6= 0

}
= Eh

and by Tonelli’s theorem∫
R2×R+

Λ(u, x, v) dµ3(u, x, v) =

∫
R2×R+

Λ(u, u+ h, v) dµ3(u, h, v)

=

∫
R

(∫
Π

Λ(u, u+ h, v) dµ2(u, v)

)
dh =

∫
R
µ2(Eh) dh = 0.

Therefore ∫
R+

( ∫
R2

Λ(u, x, v) dµ2(u, x)

)
dv =

∫
R2×R+

Λ(u, x, v) dµ3(u, x, v) = 0,

and for almost v ∈ R+

µ2({(u, x) ∈ R2 | g(x+ iv) 6= g(u+ iv)}) =

∫
R2

Λ(u, x, v) dµ(u, x) = 0.

For such v, by Lemma 3.2, there exists a constant c(v) such that g(u+ iv) = c(v). Then for
a : R+ → C defined by

a(v) =

{
c(v), if µ2({(u, x) ∈ R2 | g(x+ iv) 6= g(u+ iv)}) = 0,

0, otherwise,

we have g(w) = a(Im(w)) for almost all w ∈ Π.
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We say that a measurable function g : Π → C is vertical if there exists a measurable
function a : R+ → C such that g(w) = a(Im(w)) for almost all w in Π.

The next result was proved in [11, Theorem 3.1] (see also [14, Theorem 5.2.1]).

Theorem 3.4. Let g(w) = a(Im(w)) ∈ L∞ be a vertical symbol. Then the Toeplitz operator
Tg acting on A2(Π) is unitary equivalent to the multiplication operator Mγa = RTgR

∗ acting
on L2(R+). The function γa = γa(s) is given by

γa(s) := 2s

∫ ∞
0

a(t) e−2ts dt, s ∈ R+. (3.1)

In particular, this implies that the C∗-algebra generated by vertical Toeplitz operators
with bounded symbols is commutative and is isometrically isomorphic to the C∗-algebra
generated by the set

Γ :=
{
γa | a ∈ L∞(R+)

}
.

4 Very slowly oscillating functions on R+

In this section we introduce and discuss the algebra VSO(R+) of very slowly oscillating
functions, and show that for any vertical symbol a ∈ L∞(R+), the associated “spectral
function” γa belongs to VSO(R+).

We introduce the logarithmic metric on the positive half-line by

ρ(x, y) :=
∣∣ln(x)− ln(y)

∣∣ : R+ × R+ → [0,+∞).

It is easy to see that ρ is indeed a metric and that ρ is invariant under dilations : for all
x, y, t ∈ R+,

ρ(tx, ty) = ρ(x, y).

Recall that the modulus of continuity of a function f : R+ → C with respect to the metric
ρ is defined for all δ > 0 as

ωρ,f (δ) := sup
{
|f(x)− f(y)| | x, y ∈ R+, ρ(x, y) ≤ δ

}
.

Definition 4.1. Let f : R+ → C be a bounded function. We say that f is very slowly
oscillating if it is uniformly continuous with respect to the metric ρ or, equivalently, if the
composition f ◦ exp is uniformly continuous with respect the usual metric on R. Denote by
VSO(R+) the set of such functions.

Proposition 4.2. VSO(R+) is a closed C∗-algebra of the C∗-algebra Cb(R+) of bounded
continuous functions R+ → C with pointwise operations.
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Proof. Using the following elementary properties of the modulus of continuity one can see
that VSO(R+) is closed with respect to the pointwise operations:

ωρ,f+g ≤ ωρ,f + ωρ,g, ωρ,fg ≤ ‖f‖∞ωρ,g + ‖g‖∞ωρ,f ,
ωρ,λf = |λ|ωρ,f , ωρ,f∗ = ωρ,f .

The inequality ωρ,f (δ) ≤ 2‖f−g‖∞+ωρ,g(δ) and the usual “ ε
3
-argument” show that VSO(R+)

is topologically closed in Cb(R+).

Note that instead of the logarithmic metric ρ we can use an alternative one:
Let ρ1 : R+ × R+ → [0,+∞) be defined by

ρ1(x, y) :=
|x− y|

max(x, y)
.

It is easy to see that ρ1 is a metric. To prove the triangle inequality ρ1(x, z) + ρ1(z, y) −
ρ1(x, y) ≥ 0, use the symmetry between x and y and consider three cases: x < y < z,
x < z < y, z < x < y. For example, if x < y < z, then

ρ1(x, z) + ρ1(z, y)− ρ1(x, y) =
(z − y)(x+ y)

yz
> 0.

The other two cases are considered analogously.

Lemma 4.3. For every x, y ∈ R+ the following inequality holds

ρ1(x, y) ≤ ρ(x, y). (4.1)

Proof. The metrics ρ and ρ1 can be written in terms of max and min as shown below:

ρ(x, y) = ln
max(x, y)

min(x, y)
, ρ1(x, y) = 1− min(x, y)

max(x, y)
.

Since ln(u) ≥ 1− 1

u
for all u ≥ 1, the substitution u =

max(x, y)

min(x, y)
yields (4.1).

It can be proved that ρ(x, y) ≤ 2 ln(2)ρ1(x, y) if ρ1(x, y) < 1/2. Thus VSO(R+) could
be defined alternatively as the class of all bounded functions that are uniformly continuous
with respect to ρ1.

Theorem 4.4. Let a ∈ L∞(R+). Then γa ∈ VSO(R+). More precisely,

‖γa‖∞ ≤ ‖a‖∞,

and γa is Lipschitz continuous with respect to the distance ρ:

|γa(y)− γa(x)| ≤ 2ρ(x, y)‖a‖∞, (4.2)

that is
ωγa(δ) ≤ 2δ‖a‖∞. (4.3)
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Proof. The upper bound ‖γa‖∞ ≤ ‖a‖∞ follows directly from the definition (3.1) of γa. The
proof of (4.3) written below is based on an idea communicated to us by K. M. Esmeral
Garćıa. First, we bound |a(v)| by ‖a‖∞:

|γa(x)− γa(y)| ≤ ‖a‖∞
∫ ∞

0

∣∣2vx e−2vx−2vy e−2vy
∣∣dv
v
.

Without lost of generality assume y > x, so the inequality

2vx e−2vx−2vy e−2vy ≥ 0

is true if and only if v ≥ v0 :=
1

2

1

y − x
ln
y

x
. Then

|γa(x)− γa(y)| ≤ ‖a‖∞
∫ v0

0

(2vy e−2vy−2vx e−2vx)
dv

v

+ ‖a‖∞
∫ ∞
v0

(2vx e−2vx−2vy e−2vy)
dv

v

= 2‖a‖∞ e−2v0x
(
1− e2v0(x−y)

)
≤ 2‖a‖∞ρ1(x, y) ≤ 2‖a‖∞ρ(x, y),

where the last inequality uses Lemma 4.3.

5 Density of Γ in VSO(R+)

The set R+ provided with the standard multiplication and topology is a commutative locally
compact topological group, whose Haar measure is given by dν(s) := ds

s
.

For each n ∈ N := {1, 2, . . .}, we define a function ψn : R+ → C by

ψn(s) =
1

B(n, n)

sn

(1 + s)2n
,

where B is the Beta function.

Proposition 5.1. The sequence (ψn)∞n=1 is a Dirac sequence, i.e., it satisfies the following
three conditions:

(a) For each n ∈ N and every s ∈ R+,

ψn(s) ≥ 0.

(b) For each n ∈ N, ∫ ∞
0

ψn(s)
ds

s
= 1.
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(c) For every δ > 0,

lim
n→∞

∫
ρ(s,1)>δ

ψn(s)
ds

s
= 0.

Proof. The property (a) is obvious, and (b) follows from the formula for the Beta function:

B(x, y) =

∫ ∞
0

sx−1

(1 + s)x+y
ds.

We prove (c). Fix a δ > 0. The function s 7→ sn−1

(1 + s)2n
reaches its maximum at the point

sn := n−1
n+1

. It increases on the interval [0, sn] and decreases on the interval [sn,∞). Since

sn → 1, there exists a number N ∈ N such that e−δ < sN . Let n ∈ N with n ≥ N . Then
e−δ ≤ sN ≤ sn, and for all s ∈ (0, e−δ] we obtain

sn−1

(1 + s)2n
≤ (e−δ)n−1

(1 + e−δ)2n
.

Integration of both sides from 0 to e−δ yields∫ e−δ

0

sn−1

(1 + s)2n
ds ≤

(
e−δ

(1 + e−δ)2

)n
=

(
1

4 cosh2 (δ/2)

)n
.

Applying Stirling’s formula ([3, formula 8.327]), we have

1

B(n, n)
=

Γ(2n)

(Γ(n))2
∼ n

2

4n√
πn

.

Since cosh(δ/2) > 1,∫ e−δ

0

ψn(t)
dt

t
≤ 1

B(n, n)

(
1

4 cosh2 (δ/2)

)n
∼

√
n

2
√
π cosh2n(δ/2)

→ 0.

To prove a similar result for the integral from eδ to ∞, make the change of variable s = 1/t:

lim
n→∞

∫ ∞
eδ

ψn(t)
dt

t
= lim

n→∞

∫ e−δ

0

ψn(s)
ds

s
.

Let

Rn,δ :=

∫
ρ(s,1)>δ

ψn(s)
ds

s
, (5.1)

then

lim
n→∞

Rn,δ = lim
n→∞

∫ e−δ

0

ψn(s)
ds

s
+ lim

n→∞

∫ ∞
eδ

ψn(s)
ds

s
= 0.

12



Introduce now the standard Mellin convolution of two functions a and b from L1(R+, dν):

(a ∗ b)(x) :=

∫ ∞
0

a(y)b

(
x

y

)
dy

y
, x ∈ R+, (5.2)

being a commutative and associative binary operation on L1(R+, dν).
Note that (5.2) is well defined also if one of the functions a or b belongs to L∞(R+)

and the other belongs to L1(R+, dν). In that case a ∗ b ∈ L∞(R+) and a ∗ b = b ∗ a. The
associativity law also holds for any three functions a, b, c such that one of them belongs to
L∞(R+) and the other two belong to L1(R+, dν).

The next result is a special case of a well–known general fact on Dirac sequences and
uniformly continuous functions on locally compact groups. For the reader’s convenience we
write a proof for our case.

Theorem 5.2. Let σ ∈ VSO(R+). Then

lim
n→∞

‖σ ∗ ψn − σ‖∞ = 0. (5.3)

Proof. For every n ∈ N, δ > 0 and x ∈ R+,

|(σ ∗ ψn)(x)− σ(x)| =
∣∣∣∣∫ ∞

0

σ

(
x

y

)
ψn(y)

dy

y
−
∫ ∞

0

σ(x)ψn(y)
dy

y

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn(y)
dy

y
= I1 + I2,

where

I1 =

∫
ρ(y,1)≤δ

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn(y)
dy

y
,

I2 =

∫
ρ(y,1)>δ

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn(y)
dy

y
.

If ρ(y, 1) ≤ δ, then ρ(x/y, x) = ρ(x, xy) = ρ(y, 1) ≤ δ. Thus

I1 ≤ ωρ,σ(δ)

∫
R
ψn(y)

dy

y
= ωρ,σ(δ).

For the term I2 we obtain an upper bound in terms of Rn,δ, see (5.1):

I2 ≤ 2‖σ‖∞
∫
ρ(y,1)>δ

ψn(y)
dy

y
= 2‖σ‖∞Rn,δ.

Therefore
‖σ ∗ ψn − σ‖∞ ≤ ωρ,σ(δ) + 2‖σ‖∞Rn,δ.
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Given ε > 0, first apply the hypothesis that σ ∈ VSO(R+) and choose δ > 0 such that
ωρ,σ(δ) < ε

2
. Then use the fact that Rn,δ → 0 and find a number N ∈ N such that Rn,δ <

ε
4‖σ‖∞ for all n ≥ N . Then for all n ≥ N

‖σ ∗ ψn − σ‖∞ <
ε

2
+
ε

2
= ε.

Recall now that, for each m,n ∈ N, the generalized Laguerre polynomial (called also
associated Laguerre polynomial) is defined by

L(m)
n (t) =

1

n!
t−m et

dn

dtn

(
e−t tn+m

)
=

n∑
j=0

(−1)j(n+m)!

(n− j)! (m+ j)! j!
tj, t ∈ R+.

Then, for each n ∈ N, we introduce the function φn : R+ → C by

φn(t) =
1

(n− 1)!
tn e−t L

(n)
n−1(t). (5.4)

Each function φn is obviously bounded and continuous on R+, and admits the following
alternative representation

φn(t) =
1(

(n− 1)!
)2

dn−1

dtn−1

(
e−t t2n−1

)
.

The next lemma relates the functions ψn and φn via the Laplace transform L, which is
defined by

L(f)(s) :=

∫ ∞
0

f(t) e−st dt.

Lemma 5.3. For each n ∈ N,

ψn(s)

s
= L(φn)(s), s ∈ R+. (5.5)

Proof. The function t 7→ e−t t2n−1 and its first 2n − 2 derivatives vanish at 0 and +∞.
Integrating by parts n− 1 times we get∫ ∞

0

dn−1

dtn−1

(
e−t t2n−1

)
e−st dt = sn−1

∫ ∞
0

e−t t2n−1 e−st dt =
sn−1Γ(2n)

(1 + s)2n
.

Therefore

L(φn)(s) =
Γ(2n)

Γ(n)Γ(n)

sn−1

(1 + s)2n
=
ψn(s)

s
.
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Given a function a : R+ → C, we define ã : R+ → C as ã(t) = a(1/t).
The mapping a 7→ ã is obviously an involution:˜̃a = a, (5.6)

and, for all a ∈ L∞(R+) and b ∈ L1(R+, dν), we have

ã ∗ b = ã ∗ b̃. (5.7)

The change of variable t = 1
u

yields∫ ∞
0

a(t)b(st)
dt

t
= (ã ∗ b)(s). (5.8)

The next lemma relates “spectral functions” γa with Mellin convolutions.

Lemma 5.4. Let α(u) = 2u e−2u, then for each a ∈ L∞(R+),

γa = ã ∗ α. (5.9)

Proof. Rewrite γa in the form

γa(s) =

∫ ∞
0

a(t)
(
2st e−2st

) dt
t

and apply (5.8).

Introduce the function m2(s) := 2s, then (5.5) and (5.9) imply that the elements ψn of
the Dirac sequence are in fact certain “spectral functions”:

ψn = ˜(φn ◦m2) ∗ α = γφn◦m2 .

Now we are ready to prove the main result of the paper.
Recall first that, by Theorem 3.4, the C∗-algebra generated by vertical Toeplitz operators
with bounded symbols is isometrically isomorphic to the C∗-algebra generated by the set

Γ =
{
γa | a ∈ L∞(R+)

}
.

Theorem 5.5. We have that Γ = VSO(R+).

Proof. Let σ ∈ VSO(R+). For each n ∈ N, we define an : R+ → C by

an := σ̃ ∗ (φn ◦m2).

From (5.4) it follows that φn ∈ L1(R+, dν), and thus an ∈ L∞(R+). Then equations (5.7),
(5.6) and the associativity of Mellin convolutions yield

γan = ãn ∗ α =
( ˜̃σ ∗ ˜(φn ◦m2)

)
∗ α = σ ∗

(
˜(φn ◦m2) ∗ α

)
= σ ∗ ψn,

which means that σn ∗ ψn ∈ Γ. To finish the proof apply Theorem 5.2.
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Let us mention some important corollaries of the theorem. First of all it implies that
the C∗-algebra VT (L∞) generated by Toeplitz operators with bounded vertical symbols is
isometrically isomorphic to VSO(R+). Moreover it shows that the set of initial generators of
VT (L∞) (i.e., the Toeplitz operators with bounded vertical symbols) is dense in VT (L∞).
That is, the two quite different types of the closures, the C∗-algebraic closure and the topo-
logical closure, of the set of initial generators end up with the same result: the C∗-algebra
VT (L∞) generated by Toeplitz operators with bounded vertical symbols.

Then, the theorem permits us to compare and realize the difference between the algebra
generated by general vertical operators and its subalgebra generated by special vertical
operators, Toeplitz operators with bounded vertical symbols. The first one is isomorphic to
L∞(R+), while the second, its subalgebra, is isomorphic to VSO(R+).

In this connection it is interesting to consider “intermediate”, in a sense, operators,
the bounded vertical Toeplitz operators whose defining symbols are unbounded. As it turns
out such operators do not necessarily belong to the algebra VT (L∞) generated by vertical
Toeplitz operators with bounded symbols.

The next section is devoted to an example of such an operator.

6 Example

Note that γa can be defined by the formula (3.1) not only if a ∈ L∞(R+), but also if
a ∈ L1(R+, e

−ηt dt) for all η > 0.
In this section we construct a non-bounded function a : R+ → C such that a ∈ L1(R+, e

−ηt dt)
for all η > 0 and γa ∈ L∞(R+), but γa /∈ VSO(R+). This implies that the corresponding
vertical Toeplitz operator is bounded, but it does not belong to the C∗-algebra generated by
vertical Toeplitz operators with bounded generating symbols.

The idea of this example is taken from [4].

Proposition 6.1. Define f : {z ∈ C | Re(z) ≥ 0} → C by

f(z) :=
1

z + 1
exp

(
i

3π
ln2(z + 1)

)
, (6.1)

where ln is the principal value of the natural logarithm (with imaginary part in (−π, π]).
Then there exists a unique function A : R+ → C such that A ∈ L1(R+, e

−ηu du) for all η > 0
and f is the Laplace transform of A:

f(z) =

∫ +∞

0

A(u) e−zu du.

Proof. For every z ∈ C with Re(z) ≥ 0 we write ln(z + 1) as ln |z + 1| + i arg(z + 1) with
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−π
2
< arg(z + 1) < π

2
. Then

|f(z)| = 1

|z + 1|

∣∣∣∣exp

(
i

3π

(
ln |z + 1|+ i arg(z + 1)

)2
)∣∣∣∣

=
1

|z + 1|
exp

(
−2 arg(z + 1)

3π
ln |z + 1|

)
=

1

|z + 1|1+
2 arg(z+1)

3π

.

Since |z + 1| ≥ 1 and −1
3
< −2 arg(z+1)

3π
< 1

3
,

|f(z)| ≤ 1

|z + 1|2/3
.

Therefore for every x > 0,∫
R
|f(x+ iy)|2 dy ≤

∫
R

dy

((x+ 1)2 + y2)2/3
<

∫
R

dy

(1 + y2)2/3
< +∞,

and f belongs to the Hardy classH2 on the half-plane {z ∈ C | Re(z) > 0}. By Paley–Wiener
theorem (see, for example, Rudin [6, Theorem 19.2]), there exists a function A ∈ L2(R+)
such that for all x > 0

f(x) =

∫ +∞

0

A(u) e−ux du.

The uniqueness of A follows from the injective property of the Laplace transform. Applying
Hölder’s inequality we easily see that A ∈ L1(R+, e

−ηu du) for all η > 0:∫ +∞

0

|A(u)| e−ηu du ≤ ‖A‖2

(∫ +∞

0

e−2ηu du

)1/2

=
‖A‖2√

2η
.

Proposition 6.2. The function σ : R+ → C defined by

σ(s) :=
s

s+ 1
exp

(
i

3π
ln2(s+ 1)

)
, (6.2)

belongs to L∞(R+) \ VSO(R+). Moreover there exists a function a : R+ → C such that
a ∈ L1(R+, e

−ηt dt) for all η > 0 and σ = γa.

Proof. The function σ is bounded since |σ(s)| ≤ s
s+1
≤ 1 for all s ∈ R+. Let A be the

function from Proposition 6.1. Define a : R+ → C by

a(s) = A(2s).
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Then for all η > 0 ∫ +∞

0

|a(t)| e−ηt du =
1

2

∫ +∞

0

|A(t)| e−ηt/2 dt < +∞,

and

γa(s) = 2s

∫ +∞

0

a(t) e−2st dt = 2s

∫ +∞

0

A(2t) e−2st dt

= s

∫ +∞

0

A(t) e−st dt =
s

s+ 1
exp

(
i

3π
ln2(s+ 1)

)
= σ(s).

Let us prove that σ /∈ VSO(R+). For all s, t ∈ R+

|σ(s)− σ(t)| =
∣∣∣∣(1− 1

s+ 1

)
exp

(
i

3π
ln2(s+ 1)

)
−
(

1− 1

t+ 1

)
exp

(
i

3π
ln2(t+ 1)

)∣∣∣∣
≥
∣∣∣∣exp

(
i

3π
ln2(s+ 1)

)
− exp

(
i

3π
ln2(t+ 1)

)∣∣∣∣
− 1

s+ 1
− 1

t+ 1

=

∣∣∣∣exp

(
i

3π

(
ln2(s+ 1)− ln2(t+ 1)

))
− 1

∣∣∣∣− 1

s+ 1
− 1

t+ 1
.

Replace s by the following function of t:

s(t) := t+
t+ 1

ln1/2(t+ 1)
.

Then

ln(s(t) + 1) = ln(t+ 1) + ln

(
1 +

1

ln1/2(t+ 1)

)
= ln(t+ 1) +

1

ln1/2(t+ 1)
− 1

2 ln(t+ 1)
+O

(
1

ln3/2(t+ 1)

)
.

Denote ln2(s(t)+1)−ln2(t+1) by Lt and consider the asymptotic behavior of Lt as t→ +∞:

Lt := ln2(s(t) + 1)− ln2(t+ 1) = −1 + 2 ln1/2(t+ 1) +O
(

1

ln(t+ 1)

)
.

Since Lt is continuous and tends to +∞ as t→ +∞, for every T > 40 there exists an integer
t ≥ T such that Lt + 1 is equal to an integer multiple of 6π2, say to 6mπ2:

Lt + 1 = 6mπ2.
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For such t, ∣∣∣∣exp

(
i

3π
Lt

)
− 1

∣∣∣∣ =

∣∣∣∣exp

(
i

3π
(6mπ2 − 1)

)
− 1

∣∣∣∣
=

∣∣∣∣exp

(
− i

3π

)
− 1

∣∣∣∣ ≈ 0.106 >
1

10

and

|σ(s(t))− σ(t)| ≥
∣∣∣∣exp

(
i

3π
Lt

)
− 1

∣∣∣∣− 2

T + 1
>

1

10
− 1

20
=

1

20
.

It means that |σ(s(t))−σ(t)| does not converge to 0 as t goes to infinity. On the other hand,

ρ(s(t), t) = ln
s(t)

t
≤ t+ 1

t ln1/2(t+ 1)
→ 0.

Thus σ /∈ VSO(R+).
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Departamento de Matemáticas, CINVESTAV
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