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CONVOLUTION OPERATORS ON EXPANDING
POLYHEDRA: LIMITS OF THE NORMS
OF INVERSE OPERATORS AND PSEUDOSPECTRA

E. A. Maximenko UDC 517.983.34

Abstract: We consider matrix convolution operators with integrable kernels on expanding polyhedra.
We study their connection with convolution operators on the cones at the vertices of polyhedra. We
prove that the norm of the inverse operator on a polyhedron tends to the maximum of the norms of
the inverse operators on the cones, and the pseudospectrum tends to the union of the corresponding
pseudospectra. The study bases on the local method adapted to this kind of problems.
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Introduction

Throughout this article, we fix natural numbers n and m and a number p ≥ 1.
If X is a measurable subset of Rn then we denote by Lm

p (X) the product of m copies of the space
Lp(X) or, which is equivalent, the space of (classes of) vector-functions on X with values in Cm whose
pth powers are absolutely integrable. The norm in Lm

p (X) is defined by the formula

‖f‖p = ‖(f1, . . . , fm)‖p =

(
m∑

j=1

∫
X

|fj(x)|p dx

)1/p

.

We denote by Cm×m the space of square matrices of order m.
An operator A acting in Lm

p (Rn) by the rule

(Af)(y) = cf(y) +
∫

Rn

k(y − x)f(x) dx, y ∈ Rn, f ∈ Lm
p (Rn), (0.1)

where c ∈ Cm×m and k is an integrable vector-function with values in Cm×m, is called a matrix convolution
operator with integrable kernel (or, in other words, with Wiener symbol).

If A is an operator in Lm
p (Rn) and X is a measurable subset of Rn then we denote by AX the operator

that acts in Lm
p (X) by the formula

AX = QXAJX ,

where the operator JX : Lm
p (X) → Lm

p (Rn) extends a vector-function outside X by zero and the operator
QX : Lm

p (Rn) → Lm
p (X) restricts the domain of a vector-function.

Suppose that M is a polyhedron in Rn (here and in the sequel, all polyhedra are supposed to be
convex) and E is the set of its vertices. With each point x ∈ E we associate the cone Kx with vertex 0
which is generated by the set M − x:

Kx = {α(y − x) : α > 0, y ∈ M}.

In this article we consider some Banach algebra WM generated by convolution operators on the family
of sets {τM}τ>0. Given a point x ∈ M , we introduce the “local equivalence” relation x∼ and construct
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an isomorphism of the corresponding quotient algebra (WM )x onto the algebra CKx generated by the
convolution operators on the cone Kx. We then define a morphism of WM to the product of the family
of the algebras {CKx}x∈E . The main result of this article is Theorem 6.1 claiming that this “global
morphism” is an isometry and “agrees with inversion.”

We now present only two assertions that result from Theorem 6.1: on the limits of the norms of
inverse operators and on the limits of pseudospectra. Given a Banach algebra A with unity e and
norm | · |, a ∈ A , and ε > 0, the ε-pseudospectrum of a is the set

σε(a) = {λ ∈ C | |(λe− a)−1| ≥ 1/ε}.
(Here and in the sequel, given a noninvertible element b we put |b−1| = +∞.)

Proposition 0.1. Let A be a matrix convolution operator in Lm
p (Rn). Then

lim
τ→+∞

∥∥A−1
τM

∥∥ = max
x∈E

∥∥A−1
Kx

∥∥.
Proposition 0.2. Suppose that A is a matrix convolution operator in Lm

p (Rn), with p > 1, and
ε > 0. Then

lim
τ→+∞

σε(AτM ) =
⋃
x∈E

σε(AKx),

where the convergence of sets is understood in the sense of the Hausdorff metric.

The study of pseudospectra of Toeplitz matrices (in the scalar case and for smooth symbols) orig-
inated with the articles of H. Landau [1] and L. Reichel and L. N. Trefethen [2]. Results for the block
Toeplitz matrices and matrix Wiener–Hopf operators were obtained by A. Böttcher [3]. Using the methods
of C∗-algebras, he considered only the case of L2 but for a very broad class of symbols which contained
all piecewise continuous functions. Later, A. Böttcher and H. Wolf [4] studied Toeplitz operators on
n-dimensional cubes and established some analogs of Propositions 0.1 and 0.2 for them. S. M. Grud-
sky and A. V. Kozak [5] proved Proposition 0.1 for scalar Toeplitz operators in L1 by straightforward
computations. A. Böttcher, S. M. Grudsky, and B. Silbermann [6] proved Propositions 0.1 and 0.2 for
one-dimensional matrix convolutions with integrable kernels in Lp. The history of this problem is exposed
in more detail in [6] and in A. Böttcher and B. Silbermann’s monograph [7, Chapter 3 and § 6.3].

In this article we generalize the results of [6] to the multidimensional case. We borrow the idea of
Theorem 6.1 and the methods of dealing with pseudospectra from [6]. On the other hand, the proof of
Theorem 6.1 bases on the local method whose prototype (called also the theory of local-type operators)
was developed by I. B. Simonenko [8–12] while studying the Noether property of singular integral oper-
ators. A. V. Kozak [13–15] generalized this method to abstract Banach algebras furnished with a local
structure and applied it to studying the invertibility of convolution operators on expanding subsets of Rn

(see also [16]). We employ the local method in A. V. Kozak’s interpretation, supplementing it with
N. Ya. Krupnik’s theorem on the norm of a local-type operator [17].

§ 1. Pure Subalgebras

In this section we give elementary facts about pure subalgebras and morphisms agreeing with inver-
sion.

Henceforth by a Banach algebra we mean a unital Banach algebra (the unit is denoted by e); by
a morphism of Banach algebras we mean a morphism of unital Banach algebras; and subalgebras are not
supposed to be closed. We use the symbol Inv(A ), where A is a Banach algebra, to denote the set of
invertible elements of A ; σ(a), with a ∈ A , is the spectrum of a.

A subalgebra B of an algebra A is pure if the unit of A belongs to B and Inv(B) = B∩ Inv(A ). If
X ⊂ A then [X] stands for the closed pure subalgebra of A generated by X. Since the closure of a pure
subalgebra is a pure subalgebra, [X] is the closure of the pure subalgebra generated by X.

Let f : A → B be a morphism of Banach algebras. It follows from a ∈ Inv(A ) that f(a) ∈ Inv(B)
and f(a)−1 = f(a−1). We say that the morphism f agrees with inversion if the conditions a ∈ Inv(A )
and f(a) ∈ Inv(B) are equivalent for every a ∈ A .
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Proposition 1.1. Suppose that f : A → B is an isometric morphism of Banach algebras which
agrees with inversion and X ⊂ A . Then f([X]) = [f(X)].

Proof. Let Y1 and Y2 be the pure subalgebras of A and B generated by X and f(X). Since f

agrees with inversion, f(Y1) = Y2. Since f is an isometry of complete spaces, f(Y 1) = f(Y1) = Y 2, where
the bar denotes the closure. However, f(Y 1) = f([X]) and Y 2 = [f(X)]. Thus, f([X]) = [f(X)].

For the convenience of reference, we give an obvious assertion on uniqueness of extension of a mor-
phism to a pure subalgebra.

If f : X → Y is a mapping and X1 ⊂ X then we denote the restriction of f to X1 by f |X1.

Proposition 1.2. Suppose that A and B are Banach algebras, X ⊂ A , and f : [X] → B and
g : [X] → B are morphisms of Banach algebras such that f |X = g|X. Then f = g.

§ 2. The Local Method

In this section we give a version of the local method (or “local principle”), namely the local method
in A. V. Kozak’s interpretation [13, 15]. We replace the condition (LS4′) of Kozak’s articles with the
stronger condition (LS4) introduced by N. Ya. Krupnik [17] to prove Theorem 2.3.

First of all, we agree on the topological terms and notations. If X is a topological space then ΣX is
the ring of Borel subsets of X ; a neighborhood of a point x (x ∈ X ) is an open subset of X containing x;
Ux (x ∈ X ) is the set of neighborhoods of x; and ū (u ⊂ X ) is the closure of u.

We say that (A ,X , p) is an algebra with local structure if A is a Banach algebra (with norm | · | and
unit e), X is a compact set, p : ΣX → A , and the following properties are satisfied:

(LS1) p(X ) = e;
(LS2) p(u ∩ v) = p(u)p(v) for arbitrary u, v ∈ ΣX ;
(LS3) p(u ∪ v) = p(u) + p(v) for arbitrary u, v ∈ ΣX such that ū ∩ v̄ = ∅;
(LS4) |p(u)ap(u)+p(v)bp(v)| ≤ max(|a|, |b|) for arbitrary a, b ∈ A and u, v ∈ ΣX such that u∩v = ∅.
Below in this section we assume that (A ,X , p) is an algebra with local structure.
It follows from (LS2) that the elements of the form p(u) are idempotent: p(u)2 = p(u). Using (LS4),

we find that |p(u)| = 1 for p(u) 6= 0. In particular,
(LS4′) supu∈ΣX

|p(u)| < +∞.
Let 1u, u ∈ ΣX , be the characteristic function of the set u; B(X ), the Banach algebra of bounded

functions on X with the uniform norm; S(X ), the closed subalgebra of B(X ) generated by the elements
of the form 1u (u ∈ ΣX ); and C(X ), the Banach algebra of continuous functions on X . It is easy to see
that C(X ) ⊂ S(X ).

An element a ∈ A is said to be of local type if p(u)ap(v) = 0 for arbitrary u, v ∈ ΣX such that
ū ∩ v̄ = ∅. We denote the set of elements of local type by A ′.

Proposition 2.1. The mapping 1u 7→ p(u) (u ∈ ΣX ) has a unique extension to a morphism
µ : S(X ) → A of Banach algebras. This morphism does not increase the norm: |µ(ϕ)| ≤ ‖ϕ‖ for
all ϕ ∈ S(X ).

Theorem 2.1. A ′ consists of those and only those elements which commute with the set µ(C(X )).
Thereby A ′ is a closed pure subalgebra of A .

See the proofs of Proposition 2.1 and Theorem 2.1 in [13, 15].
In line with [12], given a point x ∈ X , we define the following seminorms:

qL(a, x) = inf
u∈Ux

|p(u)a|, qR(a, x) = inf
u∈Ux

|ap(u)|,

q(a, x) = max(qL(a, x), qR(a, x)).

Clearly, q(a, x) ≤ |a| for every a ∈ A .
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If a ∈ A ′ and x ∈ X then

q(a, x) = inf
u∈Ux

|p(u)a| = inf
u∈Ux

|ap(u)| = inf
u∈Ux

|p(u)ap(u)|.

For each point x ∈ X the seminorm q(·, x) generates the equivalence relation x∼:

a
x∼ b ⇔ q(a− b, x) = 0.

We can easily verify the following properties:
(a) if a

x∼ b then q(a, x) = q(b, x);
(b) if a1

x∼ b1, a2
x∼ b2, and λ, µ ∈ C then λa1 + µa2

x∼ λb1 + µb2;
(c) if an → a, bn → b, and an

x∼ bn then a
x∼ b;

(d) if a1, a2, b1, b2 ∈ A ′, a1
x∼ b1, and a2

x∼ b2 then a1a2
x∼ b1b2;

(e) if a, b ∈ Inv(A ′) and a
x∼ b then a−1 x∼ b−1.

Consider x∼ as an equivalence relation on A ′. Let A ′
x be the corresponding quotient set and let

πx : A ′ → A ′
x be the corresponding quotient mapping. The properties (a), (b), and (d) show that A ′

x

naturally becomes a Banach algebra with unit πx(e) and norm |πx(·)| = q(·, x).

Theorem 2.2 (see [9, 11–13, 15]). Suppose that a ∈ A ′ and that, for every x ∈ X , the element πx(a)
is left (right) invertible in the quotient algebra A ′

x. Then a is left (right) invertible.

Theorem 2.3. If a ∈ A ′ then |a| = supx∈X q(a, x).
This theorem was proven in N. Ya. Krupnik’s article [17] in some particular case but can be trivially

generalized to the case of algebras with local structure.

§ 3. The Main Objects: the Algebras AX , WX , and CX

We define the main objects of the article and show how they are connected with the objects of § 2.
As mentioned in the introduction, the numbers n ∈ N, m ∈ N, and p ∈ [1,+∞) are fixed throughout

the article.
Given a point x ∈ Rn, denote by Ux the set of neighborhoods of x (the neighborhoods are supposed

to be open).
For every measurable subset X of Rn, define the operator PX : Lm

p (Rn) → Lm
p (Rn) by the following

rule:

(PXf)(x) =
{

f(x), x ∈ X,

0, x ∈ Rn \X.

Clearly, PX = JXQX .
For brevity, below we write Lm

p rather than Lm
p (Rn).

If B is a Banach space then we denote by End(B) the Banach algebra of bounded linear operators
in B.

Take and fix until the end of this section some measurable subset X of Rn (in the next sections we
take X to be a cone or polyhedron).

Note that PX

(
End

(
Lm

p

))
PX is a Banach algebra with unit PX . For brevity, we denote it by

End
(
PXLm

p

)
. We identify PXLm

p with Lm
p (X) and End

(
PXLm

p

)
with End

(
Lm

p (X)
)
. If A ∈ End

(
Lm

p

)
then we identify the operator AX = QXAJX with the element PXAPX of End

(
PXLm

p

)
. If A ∈ End

(
Lm

p

)
and if PXAPX is invertible in the algebra End

(
PXLm

p

)
(which is equivalent to the fact that the opera-

tor QXAJX ∈ End
(
Lm

p (X)
)

is invertible) then we identify the corresponding inverse element with the
operator (QXAJX)−1 and denote it by A−1

X .
Let UX be the product of the family

{
End

(
PτXLm

p

)}
τ>0

, i.e., the set of families of operators of the
form {Aτ}τ>0, where Aτ ∈ End

(
PτXLm

p

)
and supτ>0 ‖Aτ‖ < +∞, furnished with the coordinatewise

operations and the norm
|{Aτ}τ>0|UX = sup

τ>0
‖Aτ‖.
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Consider the closed ideal JX in UX :

JX = {{Aτ}τ>0 ∈ UX | lim
τ→+∞

‖Aτ‖ = 0}.

Denote by AX the quotient algebra UX/JX . The elements of this quotient algebra have the form
a = {Aτ}τ>0 + JX , where Aτ ∈ End(PXLm

p ) and supτ>0 ‖Aτ‖ < +∞. The norm in AX is calculated by
the formula

|{Aτ}τ>0 + JX | = lim sup
τ→+∞

‖Aτ‖.

Define the mapping jX : End(Lm
p ) → AX :

jX(A) = {PτXAPτX}τ>0 + JX , A ∈ End(Lm
p ).

Let Ṙn = Rn ∪ {∞} be the compact space obtained by completing Rn with one point at infinity, let X

be the closure of X in Ṙn, and let ΣX be the set of measurable subsets of X. Given a set u ∈ ΣX , put

p(u) = {Pτ(u∩X)}τ>0 + JX .

Lemma 3.1 (see [11, 17]). Suppose that A,B ∈ End
(
Lm

p

)
and Y and Z are disjoint measurable

subsets of Rn. Then ‖PY APY + PZBPZ‖ ≤ max(‖A‖, ‖B‖).

Proposition 3.1 (see [13, 15]). (AX , X, p) is an algebra with local structure. If ϕ ∈ S(X) then
µ(ϕ) = {M(ϕτ )}τ>0 +JX , where M(ϕτ ) is the operator of multiplication by the function ϕτ defined by
the formula

ϕτ (x) = ϕ(x/τ), x ∈ µX, τ > 0.

Formally, the only new point in Proposition 3.1 is the fact that the condition (LS4) holds for
(AX , X, p); this follows from Lemma 3.1.

Denote by Wp the closure in End
(
Lm

p

)
of the set of matrix convolution operators, i.e., operators of

the form (0.1), where c ∈ Cm×m and k ∈ Lm×m
1 (Rn).

Let CX = [PXWpPX ] and WX = [jX(Wp)]. In more detail, CX is the closed pure subalgebra of the
Banach algebra End(PXLm

p ) which is generated by the set {PXAPX | A ∈ Wp} and WX is the closed
pure subalgebra of the Banach algebra AX which is generated by the set {jX(A) | A ∈ Wp}.

Proposition 3.2. WX ⊂ A ′
X .

Proof (see [10, 14, 16]). Let A be a matrix convolution operator with compactly-supported kernel;
i.e., A has the form (0.1), where c ∈ Cm×m and k ∈ Lm×m

1 ; moreover, k(x) = 0 for |x| ≥ d, d > 0. Then
PY APZ = 0 for dist(Y, Z) > d, where

dist(Y, Z) = inf
y∈Y

inf
z∈Z

|y − z|.

If u, v ⊂ X and ū ∩ v̄ = ∅ then r = dist(u, v) > 0; moreover, dist(τu, τv) > d and PτuAPτv = 0 for
τ > d/r. Hence, p(u)jX(A)p(v) = 0.

Thus, jX(A) ∈ A ′
X if A has the indicated form. However, the operators of this form constitute

a dense subset in Wp; therefore, jX(Wp) ⊂ A ′
X . By Theorem 2.1, A ′

X is a closed pure subalgebra of AX .
Hence, WX = [jX(Wp)] ⊂ A ′

X , and the proposition is proven.

Propositions 3.1 and 3.2 enable us to use the notations of § 2 for the algebra AX (in particular, q(·, x)
and x∼, where x ∈ X) and apply all assertions concerning local-type elements to the elements of WX .
Given a point x ∈ X, we denote by (WX)x the algebra πx(WX) = WX/

x∼.
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§ 4. The Case of Cones

Given X ⊂ Rn and y ∈ Rn, put
cony(X) = {λ(x− y) : λ > 0, x ∈ X}.

A set K ⊂ Rn is called cone with vertex y if K = cony(K).
Let K be a measurable cone in Rn with vertex 0; we assume it fixed till the end of the section.

Lemma 4.1. Suppose that A ∈ End(PKLp) and

a = jK(A) = {A}τ>0 + JK . (4.1)
Then |a| = q(a, 0) = ‖A‖. If u is some neighborhood of 0 and a = jK(A) = {Bτ}τ>0 + JK then

A = s-lim
τ→+∞

Pτ(u∩K)BτPτ(u∩K) = s-lim
τ→+∞

Pτ(u∩K)Bτ = s-lim
τ→+∞

BτPτ(u∩K). (4.2)

(Here and in the sequel s-lim denotes the pointwise limit.)
Proof. Formula (4.2) follows from the relations

lim
τ→+∞

Bτ = A, s-lim
τ→+∞

Pτ(u∩K) = s-lim
τ→+∞

Pτ(u∩K) = PK .

From (4.2) and the properties of pointwise convergence of operators we obtain
‖A‖ ≤ lim inf

τ→+∞
‖Pτ(u∩K)Bτ‖ ≤ |p(u ∩K)a|,

whence ‖A‖ ≤ qL(a, 0). Similarly, ‖A‖ ≤ qR(a, 0). Thus, ‖A‖ ≤ q(a, 0). The inequalities q(a, 0) ≤ |a| ≤
‖A‖ are obvious.

Lemma 4.2. Suppose that A ∈ End(PKLp), a = jK(A), and a ∈ A ′
K . Then the following conditions

are equivalent:
(a) the operator A is invertible on K;
(b) the element a of the algebra AK is invertible;
(c) the element π0(a) of the quotient algebra (A ′

K)0 is invertible.

If these conditions are satisfied then a−1 = {A−1
K }τ>0 + JK .

A somewhat different version of this assertion was proven in [13, 15].
Recall that (WK)0 = (WK/

0∼) = π0(WK).

Proposition 4.1. The mappings (jK |CK) : CK → WK and (π0|WK) : WK → (WK)0 are isometric
morphisms of Banach algebras, and thereby the mapping isoconK = (jK |CK)−1◦(π0|WK)−1 is an isometric
isomorphism of (WK)0 onto CK .

Proof. It is easily seen that jK(CK) ⊂ WK . It follows from Lemma 4.1 that the mapping jK :
End(PKLp) → AK is an isometric morphism of Banach algebras. Lemma 4.2 and Proposition 3.2 show
that the morphism jK |CK agrees with inversion. By Proposition 1.1, jK |CK is an isometric isomorphism
of CK onto WK . The assertion concerning the morphism π0|WK ensues from Lemmas 4.1 and 4.2.

Proposition 4.2. Suppose that b ∈ WK and b = {Bτ}τ>0 + JK . Then

isoconK(π0(b)) = s-lim
τ→+∞

Bτ .

Proof. Let A = isoconK(π0(b)) and f ∈ PKLp. We have to demonstrate that limτ ‖(Bτ−A)f‖ = 0.
Put a = {A}τ>0 + JK . Then π0(a) = π0(b). Take an arbitrary ε > 0 and find a neighborhood u of the
origin such that |(a− b)p(u)| < ε, i.e.,

lim sup
τ→+∞

‖(Bτ −A)Pτu‖ < ε.

Since limτ ‖BτPτuf −Bτf‖ = 0 and limτ ‖APτuf −Af‖ = 0, we obtain
lim sup
τ→+∞

‖(Bτ −A)f‖ = lim sup
τ→+∞

‖(Bτ −A)Pτuf‖ < ε.

Once ε > 0 is chosen arbitrarily, we have limτ→+∞ ‖(Bτ −A)f‖ = 0.
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§ 5. The Local Isomorphism

This section bases on the ideas of [14] (see also [10]).
Let Th, h ∈ Rn, be the operator of translation by h in Lm

p :

(Thf)(y) = f(y − h), y ∈ Rn, f ∈ Lm
p ,

where Σ is the set of measurable subsets of Rn. Note that if X ∈ Σ and h ∈ Rn then ThPX = PX+hTh.
Suppose that X, Y ⊂ Rn, x ∈ X, and y ∈ Y . We say that the set X at x is equivalent to the set Y

at y if there exist u ∈ Ux and v ∈ Uy such that (X ∩ u)− x = (Y ∩ v)− y.
Suppose that X, Y ∈ Σ. For the algebra AY we write p′ instead of p and q′ instead of q. If x,

y, u, and v are as in the above definition then we consider the mappings ϕ : u ∩ X → v ∩ Y and
Φuv : p(u)AXp(u) → p′(v)AY p′(v):

ϕ(z) = z + y − x, z ∈ u ∩X;

Φuv(a) = {Tτ(y−x)PτuAτPτuTτ(x−y)}τ>0 + JY ,

where a = {Aτ}τ>0 + JX ∈ p(u)AXp(u). It is clear that the definition of Φuv(a) is independent of
the choice of {Aτ}τ>0. Obviously, Φuv is an isometric isomorphism of p(u)AXp(u) onto p′(v)AY p′(v);
moreover, Φuv(p(w)) = p′(ϕ(w)) for all w ∈ Ux.

Suppose that X, Y ∈ Σ and the set X at x is locally equivalent to the set Y at y.
Define the relation Rxy ⊂ A ′

X × A ′
Y , by putting aRxyb if there exist u ∈ Ux and v ∈ Uy such that

(X ∩ u)− x = (Y ∩ v)− y and Φuv(p(u)ap(u))
y∼ p′(v)bp′(v).

Observe the following obvious properties of the relation Rxy:
(a) if a ∈ A ′

X , b ∈ A ′
Y , and aRxyb then q(a, x) = q′(b, y);

(b) if a1, a2 ∈ A ′
X , b1, b2 ∈ A ′

Y , a1Rxya2, b1Rxyb2, and λ1, λ2 ∈ C then

(λ1a1 + λ2a2)Rxy(λ1b1 + λ2b2), a1a2Rxyb1b2.

Proposition 5.1. Suppose that X, Y ∈ Σ, x ∈ X, y ∈ Y , and the set X at x is equivalent to
the set Y at y. Then there is a unique isomorphism locxy : (A ′

X)x → (A ′
Y )y such that the relation

locxy(πx(a)) = πy(b) is equivalent to the relation aRxyb for arbitrary a ∈ A ′
X and b ∈ A ′

Y .

Proof. 1. Let R̃xy ⊂ (A ′
X)x × (A ′

Y )y be the relation defined by the rule

πx(a)R̃xyπy(b) ⇔ aRxyb, a ∈ A ′
X , b ∈ A ′

Y .

2. For each a ∈ A ′
X , there is an element b ∈ A ′

Y such that aRxyb; i.e., πx(a)R̃xyπy(b). Indeed, suppose
that u ∈ Ux and v ∈ Uy are such that (u ∩X)− x = (v ∩ Y )− y. Then b = Φuv(p(u)ab(u)) is the sought
element.

3. Similarly, we can prove that, for every b ∈ A ′
Y , there is an element a ∈ A ′

X such that πx(a)R̃xyπy(b).
4. It follows from the properties (a) and (b) of the relation Rxy and Sections 2 and 3 that R̃xy is the

graph of some isometric isomorphism which we denote by locxy. The existence is proven.
5. If the morphism locxy satisfies the conditions of the proposition then its graph coincides obviously

with R̃xy. The uniqueness is proven.

Proposition 5.2. Suppose that X, Y ∈ Σ, x ∈ X, y ∈ Y , the set X at x is equivalent to the set Y
at y, and A ∈ Wp. Then jX(A)RxyjY (A); i.e.,

locxy(πx(jX(A))) = πy(jY (A)).

Proof. Suppose that u ∈ Ux, v ∈ Uy, and (X ∩ u) − x = (Y ∩ v) − y. Using the invariance of A
under translations, we obtain

Tτ(y−x)PτuPτXAPτXPτuTτ(x−y) = Pτ(v∩Y )APτ(v∩Y )

for every τ > 0. Hence, Φuv(jX(A)) = p(v)jY (A)p(v)
y∼ jY (A) and jX(A)RxyjY (A).
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Proposition 5.3. Suppose that M ∈ Σ, x ∈ M , K is a cone with vertex 0, and the set M at x
is locally equivalent to the cone K at 0. Then there is a unique morphism θx : WM → End(PKxLp)
of Banach algebras such that θx(jM (A)) = PKAPK for every A ∈ Wp. Moreover, θx(WM ) ⊂ CK , the
relations

‖θx(a)‖ = q(a, x) ≤ |a|

hold for every a ∈ WM , and the invertibility of θx(a) in End(PKLp) is equivalent to the invertibility of
the element πx(a) in the quotient algebra (WM )x.

Proof. Define the morphism θx by the formula

θx(a) = isocon(locx0(πx(a))), a ∈ WK . (5.1)

It follows from Propositions 4.1 and 5.2 that θx possesses the above properties. The uniqueness ensues
from Proposition 1.2.

From (5.1) and Proposition 4.2 we obtain an explicit description for the morphism θx in terms of
pointwise limit of operators.

Proposition 5.4. Suppose that M ∈ Σ, x ∈ M , K is a cone with vertex 0, u ∈ U0, (M − x) ∩ u =
K ∩ u, and a = {Aτ}τ>0 + JM . Then

θx(a) = s-lim
τ→+∞

PτuT−τxAτTτxPτu = s-lim
τ→+∞

T−τxAτTτx

and consequently
‖θx(a)‖ ≤ lim inf

τ→+∞
‖Aτ‖. (5.2)

Now, we need an assertion on “domination” of one point over another.

Proposition 5.5. Suppose that M ∈ Σ, x, y ∈ M , u ∈ Ux, v ∈ U0, K is a cone with vertex 0,
(M ∩ u) − x = K ∩ v, and y ∈ u. Then the inequality q(a, x) ≥ q(a, y) holds for every a ∈ A ′

M and the
invertibility of πx(a) in (A ′

M )x implies the invertibility of πy(a) in (A ′
M )y.

Proof. Define the mapping ϕ : u → v by the formula ϕ(z) = z − x. Then the corresponding
mapping Φuv establishes an isomorphism of the algebra p(u)A ′

Xp(u) onto the algebra p(v)A ′
Kp(v). Take

an arbitrary a ∈ A ′
X . It follows from Proposition 5.1 and Lemmas 4.2 and 4.1 that the invertibility of

the element p(u)ap(u) in the algebra p(u)A ′
Xp(u) is equivalent to the invertibility of πx(a) in (A ′

X)x, and
q(a, x) = |p(u)ap(u)|. On the other hand, since u is a neighborhood of y, the invertibility of p(u)ap(u)
in p(u)A ′

Xp(u) implies the invertibility of πy(a); moreover, q(a, y) ≤ |p(u)ap(u)|.

§ 6. The Main Theorem

In this section we suppose that M is a polyhedron in Rn and E is the set of its vertices.

Lemma 6.1. Let a ∈ A ′
M . Then the invertibility of a is equivalent to the fact that, for every point

x ∈ E, the element πx(a) is invertible in (A ′
M )x. Moreover, |a| = maxx∈E q(a, x).

Proof. A similar assertion with E replaced by M ensues from Proposition 3.1 and the general
Theorems 2.2 and 2.3 of the local method. Passage from M to E follows from Proposition 5.5, since
for every point y ∈ M we can obviously find a vertex x ∈ E which “dominates” y in the sense of
Proposition 5.5. The lemma is proven.

In the product
∏

x∈E End
(
PKxLm

p

)
, consider the closed pure subalgebra C̃ generated by the families

of the form {PKxAPKx}x∈E , where A ∈ Wp. Clearly,

C̃ ⊂
∏
x∈E

CKx .
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Theorem 6.1. There is a unique morphism

Θ : WM →
∏
x∈E

End(PKxLp)

of Banach algebras such that Θ(jM (A)) = {PKxAPKx}x∈E for all A ∈ Wp. This morphism Θ is

an isometry which agrees with inversion, has the image C̃ , and is the product of the family of the
morphisms {θx}x∈E .

Proof. Put Θ =
∏

x∈E θx. Then it follows from Proposition 5.3 and Lemma 6.1 that Θ is an isom-
etry which agrees with inversion. By Proposition 1.1, Θ(WM ) = C̃M . The uniqueness of Θ ensues from
the relation WM = [jM (Wp)] and Proposition 1.2.

Remark. In the one-dimensional case (n = 1 and M = [0, 1]) an assertion similar to Theorem 6.1
was proven in [6] by a constructive description of the algebras WM and CK .

Corollary 6.1. Suppose that an element a ∈ WM has representation a = {Aτ}τ>0 + JM . Then

lim
τ→+∞

‖Aτ‖ = |a| = max
x∈E

‖θx(a)‖.

Proof. The corollary follows from Theorem 6.1 and (5.2).

Corollary 6.2. Suppose that a ∈ WM and a = {Aτ}τ>0 + JM . Then the following conditions are
equivalent:

(a) the element a is invertible in AM ;

(b) lim supτ→+∞ ‖(Aτ )−1
τM‖ < +∞; i.e., there is τ0 > 0 such that the operators Aτ are invertible

on τM for τ > τ0 and supτ>τ0 ‖(Aτ )−1
τM‖ < +∞;

(c) for each point x ∈ E the operator θx(a) is invertible on Kx.
If these conditions are satisfied then

θx(a)−1
Kx

= s-lim
τ→+∞

T−τx(Aτ )−1
τMTτx

for every point x ∈ E. Moreover,

lim
τ→+∞

∥∥(Aτ )−1
τM

∥∥ = |a−1| = max
x∈E

∥∥θx(a)−1
Kx

∥∥.
In particular, for a = jM (A) and A ∈ Wp we obtain

Corollary 6.3. Let A ∈ Wp. Then the following conditions are equivalent:
(a) the element jM (A) is invertible in AM ;

(b) lim supτ→+∞ ‖A−1
τM‖ < +∞;

(c) the operator A is invertible on Kx for all x ∈ E.
If these conditions are satisfied then

A−1
Kx

= s-lim
τ→+∞

T−τxA−1
τMTτx

for every point x ∈ E. Moreover,

lim
τ→+∞

‖A−1
τM‖ = max

x∈E
‖A−1

Kx
‖. (6.1)

Relation (6.1) was stated in the introduction as Proposition 0.1. The other assertions of Corollary 6.3
were proven by A. V. Kozak in [13–15]. He also proved similar results for weak and composite convolutions
and for sets M of a more general form than polyhedra.
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§ 7. Limits of Pseudospectra

In this section, from Corollary 6.2 we derive the theorem on the limit of pseudospectra. The idea of
the proof is borrowed from [6].

First, we give the necessary information about the norm of the resolvent, pseudospectrum, and the
Hausdorff metric.

Let A be a Banach algebra (with unit e and norm | · |) and let Ċ = C∪{∞} be the extended complex
plane. Define the function nr : A × Ċ → [0,+∞] (the “norm of the resolvent”) by the formula

nr(a, λ) =


|(λe− a)−1|, λ ∈ C \ σ(a),
+∞, λ ∈ σ(a),
0, λ = ∞.

It is easy to see that the function nr(a, ·) is continuous on Ċ. In particular,

|nr(a, µ)− nr(a, λ)| < |µ− λ|nr(a, λ)2

1− |µ− λ|nr(a, λ)
. (7.1)

Theorem 7.1. Suppose that (Ω, µ) is a measure space, p ∈ (1,+∞), A = End(Lp(Ω, µ)), and
a ∈ A . Then the maximum principle holds for the norm of the resolvent of the element a; i.e., the
function nr(a, ·) has no local maximum on C \ σ(a).

This theorem was proven in [6]. It is clear that we can replace End(Lp(Ω, µ)) in Theorem 7.1
with End

(
Lm

p (Ω, µ)
)
. The maximum principle for the norm may fail for arbitrary operator-valued analytic

functions (see a counterexample in [6]).
If a ∈ A and ε > 0 then the ε-pseudospectrum of a is defined by the equality

σε(a) = {λ ∈ C | nr(a, λ) ≥ 1/ε}.

Clearly, σε(a) is a compact set in C; moreover, σ(a) ⊂ σε(a).
Recall the definition of the Hausdorff metric dH . Let K be a collection of nonempty compact sets

in C. For arbitrary X, Y ∈ K

dH(X, Y ) = max
(

sup
x∈X

inf
y∈Y

|x− y|, sup
y∈Y

inf
x∈X

|x− y|
)
.

Thus, the inequality dH(X, Y ) < δ means that X ⊂ U(Y, δ) and Y ⊂ U(X, δ), where

U(X, δ) =
{
z ∈ C | inf

x∈X
|z − x| < δ

}
.

It is well known that (K , dH) is a complete metric space. If {Xτ}τ>0 is a directed family in K and
Y ∈ K then the notations Xτ → Y and limτ Xτ = Y mean that dH(Xτ , Y ) → 0 which is equivalent to
the following: for every δ > 0, there is τ0 > 0 such that Xτ ⊂ U(Y, δ) and Y ⊂ U(Xτ , δ) for τ > τ0.

As in § 6, let M be a polyhedron in Rn and let E be the set of its vertices. In the proof of the
following theorem, it is essential that E is finite. We additionally suppose that p ∈ (1,+∞). This is
necessary for the applicability of Theorem 7.1.

Theorem 7.2. Suppose that a ∈ WM , a = {Aτ}τ>0 + JM , and ε > 0. Then

lim
τ→+∞

σε(Aτ ) = σε(a) = σε(Θ(a)) =
⋃
x∈E

σε(θx(a)).
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Proof. 1. From Corollary 6.2 to Theorem 6.1 we obtain

σε(a) = σε(Θ(a)) =
⋃
x∈E

σε(θx(a)).

We are left with proving that σε(Aτ ) → σε(a) as τ → +∞.
2. Prove that, for every δ > 0, there is τ0 > 0 such that σε(Aτ ) ⊂ U(σε(a), δ) for τ > τ0. For each

point λ of the compact set Q = Ċ \ U(σε(a), δ) we have

lim
τ→+∞

nr(Aτ , λ) = nr(a, λ) = 1/ε− ξλ,

where ξλ > 0. Hence, we find τλ > 0 such that nr(Aτ , λ) < 1/ε − ξλ/2 for τ > τλ. Using (7.1), we
find a neighborhood Uλ of λ such that nr(Aτ , µ) < 1/ε − ξλ/3 for all µ ∈ Uλ and τ > τλ. The family
{Uλ}λ∈S constitutes an open covering of the compact set Q. Extract a finite set Λ ⊂ Q such that the
family {Uλ}λ∈Λ covers Q and put τ0 = max{τλ : λ ∈ Λ} and ξ = min{ξλ : λ ∈ Λ}. Then

nr(Aτ , µ) < 1/ε− ξ/3 < 1/ε

for τ > τ0 and µ ∈ Q. We have thus proven that σε(Aτ ) ⊂ C \Q = U(σε(a), δ) for τ > τ0.
3. Take arbitrary δ > 0 and x ∈ E, put Bx = θx(a), and prove the existence of τ ′x > 0 such that

σε(Bx) ⊂ U(σε(Aτ ), δ) for τ > τ ′x. For each point λ ∈ σε(Bx), consider its δ/2-neighborhood U(λ, δ/2).
Using Theorem 7.1 (on the norm of the resolvent), find µ ∈ U(λ, δ/2) such that nr(Bx, µ) > 1/ε. Now,
using the relation

lim
τ→+∞

nr(Aτ , µ) = nr(a, µ) ≥ nr(Bx, µ),

take τ ′λ > 0 such that nr(Aτ , µ) > 1/ε for τ > τ ′λ. For τ > τ ′λ we then have µ ∈ σε(Aτ ), λ ∈ U(σε(Aτ ),
δ/2), and U(λ, δ/2) ⊂ U(σε(Aτ ), δ). Extracting a finite subcovering from the covering {U(λ, δ/2) : λ ∈
σε(Bx)} of the compact set σε(Bx), we find τ ′x > 0 such that σε(Bx) ⊂ U(σε(Aτ ), δ) for τ > τ ′x.

4. Now, take an arbitrary δ > 0, for each point x ∈ E construct τ ′x as in Section 3, and put
τ ′ = maxx∈E τ ′x. Then

σε(a) =
⋃
x∈E

σε(Bx) ⊂ U(σε(Aτ ), δ)

for τ > τ ′. This, together with Section 2, implies that

lim
τ

σε(Aτ ) = σε(a).

The theorem is proven.

Proposition 0.2 is obtained from Theorem 7.2 for a = jM (A).
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3. Böttcher A., “Pseudospectra and singular values of large convolution operators,” J. Integral Equations Appl., 6, 267–301
(1994).
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(1973).
15. Kozak A. V., Projection Methods for Solving Multidimensional Equations of Convolution Type, Diss. Kand. Fiz.-Mat.

Nauk, Rostov-on-Don, 1974.
16. Kozak A. V. and Simonenko I. B., “Projection methods for solving multidimensional discrete equations in convolutions,”

Sibirsk. Mat. Zh., 21, 119–127 (1980).
17. Krupnik N. Ya., “Exact constant in Simonenko’s theorem on the envelope of a family of operators of local type,”

Funktsion. Anal. i Prilozhen., 20, 70–71 (1986).

1038


