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Szegő and Widom have obtained a formula similar to formula (1) below but with a
remainder term of the form o(1) (see [4, Chapter 5]). However, it has not been shown up
till now that, for a sufficiently smooth symbol σ, the principal part of that formula gives
a complete expansion of TfAN in powers of 1

N
, see (2). The results presented here fill this

gap in both discrete and continuous cases. They predict that, based on formulas (1)–(4),
algorithms for evaluating the generalized traces of TfAN and TfAN should be much more
efficient.

Let C be the field of complex numbers, T = {z | z ∈ C, |z| = 1}; s be the Lebesgue
measure, i.e., the length on T, and Z and N be the sets of integers and positive integers,
respectively. Denote by lk (k ∈ Z) the linear functional on L1(T) defined by the equality

lkφ =
1

2π

∫
T

t−kφ(t) ds,

and let Km (m ∈ N) be the space of continuous functions φ defined on T and obeying the
conditions ∑

k∈Z

|k|m|lkφ|2 < +∞,
∑
k∈Z

|lkφ| < +∞.

Let us introduce some notation.

Cn (n ∈ N) is the set of square matrix-valued functions of order n that are continuous
on S. Zn is the set of matrix-valued functions in Cn that (a) are everywhere nonsingular
and (b) have zero left and right partial indices1 (see [7]). Note that Z1 coincides with the
set of continuous nonvanishing functions on S whose argument has a zero increment while
traversing S.

1The term “partial indices” was introduced by Muskhelishvili and Vekua [6, 5]. However, we will distin-
guish two types of partial indices (left and right), as was done in [7].
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G(σ), with σ ∈ Cn, is the set of those λ ∈ C for which λE − σ ∈ Zn, where E is an
identity matrix, F (σ) = C \G(σ).

tr(σ) is the trace of a square numerial matrix A.

TfA, where f is a function of a complex variable and A is a square numerical matrix, is
the sum

∑
λ∈Λ ρ(λ)f(λ), where Λ is the set of eigenvalues of A that belong to the domain of

f and ρ(λ) is their multiplicity.

Theorem 1. Suppose that σ ∈ Cn; f is an analytic function of a complex variable defined on
an open set containing F (σ); lkσ (k ∈ Z) is the numerical square matrix of order n defined
by the equality lkσ = (lkσi,j), where σi,j (i, j ∈ {1, 2, . . . , n}) are the elements of the matrix
σ. Denote by AN (N ∈ N) a block matrix (ai,j) (i, j ∈ {1, 2, . . . , N}) such that ai,j = li−jσ.
Then the following is true:

(i) if m ∈ N and the elements of σ belong to Km, then, as N → +∞, we have the
asymptotic formula

TfAN = c0N + c1 + o(N1−m). (1)

Here c0, c1 ∈ C and c0 is calculated by the formula

c0 =
1

2π

∫
S

ψ ds,

where ψ is the function on S defined by the equality

ψ(t) = tr[f(σ(t))];

(ii) if the elements of σ are infinitely differentiable, then

TfAN = c0N + c1 +O(N−∞). (2)

Here and below, this means that the remainder term of a formula decreases faster than
any negative power.

Note that, for every t ∈ T, the spectrum of σ(t) is contained in the domain of f . Conse-
quently, the matrix f(σ(t)) is defined for every t ∈ T.

Let us turn to the continuous case.

Suppose that R is the field of real numbers, Ṙ is the real line extended by one point at
infinity ∞; Φϕ, with ϕ ∈ L1(R), is the function on R defined by the equality

(Φϕ)(x) =
1

2π

+∞∫
−∞

ϕ(t) exp(−itx) dt,
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where i is the imaginary unit; and Km (m ∈ N) is the set of functions ϕ ∈ L1(R) such that

Φϕ ∈ L1(R) and

+∞∫
−∞

|(Φϕ)(x)|2 |x|m dx < +∞.

Note that, if ϕ ∈ Km, then ϕ is continuous, continuously extendable to Ṙ, and ϕ(∞) = 0.

We introduce the necessary notation.

Cn (n ∈ N) is the set of square matrix-valued functions M of order n in R that are
representable as M = M0 +M1, where M0 is a numerical matrix and M1 is a matrix-valued
function whose elements can be represented by absolutely convergent Fourier integrals. Zn
is the set of matrix-valued functions from Cn that are everywhere nonsingular (including the
point at infinity, to which they are continuously extendable) and whose left and right partial
indices are zero [8, p. 33].

G(σ) (σ ∈ Cn) is the set of λ ∈ C for which λE − σ ∈ Zn, where E is an identity matrix;
F(σ) = C \G(σ).

U is the set of analytic functions f of a complex variable defined on an open subset of
the complex plane with zero and such that f(0) = 0.

TfA, where f ∈ U and A is a nuclear operator (trace-class operator), is the sum∑
λ∈Λ ρ(λ)f(λ), where Λ is the set of nonzero eigenvalues of A that belong to the domain of

f and ρ(λ) is their multiplicity. Note that this sum makes sense because A is nuclear and
f(0) = 0.

Theorem 2. Suppose that σ ∈ Cn; the elements of σ belong to L1(R); f ∈ U is a function
whose domain contains F(σ); k is the square matrix-valued function of order n defined in R
by the equality k = (Φ(σi,j)) (i, j ∈ {1, 2, . . . , n}), where σi,j are the elements of σ; and AN
(0 < N < +∞) is the operator in Ln1 ([0, N ]) acting by the rule

(ANϕ)(y) =

N∫
0

k(y − x)ϕ(x) dx.

Then the following is true:

(i) If m ∈ N and the elements of σ belong to Km, then, as N → +∞, we have the
asymptotic formula

TfAN = c0N + c1 + o(N1−m). (3)

Here c0, c1 ∈ C, and

c0 =
1

2π

+∞∫
−∞

ψ(t) dt,
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where ψ is the function on R defined by the equality

ψ(t) = tr[f(σ(t))].

(ii) If the elements of σ are infinitely differentiable functions representable, together with
all of their derivatives, by absolutely summable Fourier integrals, then

TfAN = c0N + c1 +O(N−∞). (4)

Note that, in this case, the matrix f(σ(t)) is also well defined for every t ∈ R.
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