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Abstract

In the paper we deal with Toeplitz operators acting on the Bergman space
A2(Bn) of square integrable analytic functions on the unit ball Bn in Cn. A
bounded linear operator acting on the space A2(Bn) is called radial if it com-
mutes with unitary changes of variables. Zhou, Chen, and Dong [9] showed that
every radial operator S is diagonal with respect to the standard orthonormal
monomial basis (eα)α∈Nn . Extending their result we prove that the correspond-
ing eigenvalues depend only on the length of multi-index α, i.e. there exists a
bounded sequence (λk)∞k=0 of complex numbers such that Seα = λ|α|eα.

Toeplitz operator is known to be radial if and only if its generating symbol
g is a radial function, i.e., there exists a function a, defined on [0, 1], such that
g(z) = a(|z|) for almost all z ∈ Bn. In this case Tgeα = γn,a(|α|)eα, where the
eigenvalue sequence

(
γn,a(k)

)∞
k=0

is given by

γn,a(k) = 2(k + n)

∫ 1

0

a(r) r2k+2n−1 dr = (k + n)

∫ 1

0

a(
√
r) rk+n−1 dr.

Denote by Γn the set {γn,a : a ∈ L∞([0, 1])}. By a result of Suárez [8], the C∗-
algebra generated by Γ1 coincides with the closure of Γ1 in `∞ and is equal to
the closure of d1 in `∞, where d1 consists of all bounded sequences x = (xk)∞k=0

such that
sup
k≥0

(
(k + 1) |xk+1 − xk|

)
< +∞.

We show that the C∗-algebra generated by Γn does not actually depend on n,
and coincides with the set of all bounded sequences (xk)∞k=0 that are slowly
oscillating in the following sense: |xj − xk| tends to 0 uniformly as j+1

k+1 → 1
or, in other words, the function x : {0, 1, 2, . . .} → C is uniformly continuous
with respect to the distance ρ(j, k) = | ln(j + 1) − ln(k + 1)|. At the same
time we give an example of a complex-valued function a ∈ L1([0, 1], r dr) such
that its eigenvalue sequence γn,a is bounded but is not slowly oscillating in the
indicated sense. This, in particular, implies that a bounded Toeplitz operator
having unbounded defining symbol does not necessarily belong to the C∗-algebra
generated by Toeplitz operators with bounded defining symbols.

AMS (MOS) subject classification: Primary 47B35; Secondary 32A36, 44A60.

Keywords. Radial Toeplitz operator, Bergman space, unit ball, slowly oscillating
sequence.
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1 Introduction and main results

Bergman space on the unit ball

We shall use some notation and well-known facts from Rudin [3] and Zhu [10].
Denote by 〈·, ·〉 the usual inner product in Cn: 〈z, w〉 =

∑n
j=1 zjwj . Let | · | be

the Euclidean norm in Cn induced by this inner product, and let Bn be the unit
ball in Cn. Denote by dv the Lebesgue measure on Cn = R2n normalized so that
v(Bn) = 1, and denote by dσ the surface measure on the unit sphere S2n−1 = ∂Bn
normalized so that σ(S2n−1) = 1. Let N = {0, 1, 2, . . .}. Given a multi-index α ∈ Nn
and a vector z ∈ Cn, we understand the symbols |α|, α! and zα in the usual sense:

|α| =
n∑
j=1

αj , α! =

n∏
j=1

αj !, zα =

n∏
j=1

z
αj
j .

Consider the Bergman space A2 = A2(Bn, v) of all square integrable analytic func-
tions on Bn. Denote by (eα)α∈Nn the standard orthonormal monomial basis in A2:

eα(z) =

√
(n+ |α|!)
n!α!

zα.

The reproducing kernel Kz of the space A2 at a point z ∈ Bn satisfies 〈f,Kz〉 = f(z)
for all f ∈ A2, and is given by the following formula:

Kz(w) =
∑
α∈Nn

eα(z) eα =
1

(1− 〈w, z〉)n+1
.

The Berezin transform of a bounded linear operator S : A2 → A2 is a function
Bn → C defined by

(B(S))(z) =
〈SKz,Kz〉
‖Kz‖2

= (1− |z|2)n+1〈SKz,Kz〉.

It is well known that the Berezin transform B is injective: if B(S) is identically zero,
then S = 0. A proof of this fact for the one-dimensional case is given by Stroethoff
[7].

Given a function g ∈ L1(Bn), the Toeplitz operator Tg is defined on a dense
subset of A2 by

(Tg(f))(z) :=

∫
Bn
Kz gf dv.

If g ∈ L∞(Bn), then Tg is bounded and ‖Tg‖ ≤ ‖g‖∞.

Radial operators on the unit ball

Following Zhou, Chen and Dong [9] we recall the concept of a radial function on Bn
and of a radial operator acting on A2. The radialization of a measurable function
f : Bn → C is given by

rad(f)(z) :=

∫
Un
f(Uz)dH(U),
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where dH is the normalized Haar measure on the compact group Un consisting of
the unitary matrices of order n.

A function f : Bn → C is called radial if rad(f) coincides with f almost every-
where. For a continuous function f this means that f(z) = f(|z|) for all z ∈ Bn.

Given a unitary matrix U ∈ Un, denote by ΨU the corresponding “change of a
variable operator” acting on A2:

(ΨUf)(z) := f(U∗z).

Here U∗ is the conjugated transpose of U . Note that ΨU is a unitary operator on
the space A2, its inverse is ΨU∗ , and the formula ΨU1U2 = ΨU1ΨU2 holds for all
U1, U2 ∈ Un.

Given a bounded linear operator S : A2 → A2, its radialization Rad(S) is defined
by

Rad(S) :=

∫
Un

ΨUSΨU∗ dH(U),

where the integration is understood in the weak sense.
A bounded linear operator S is called radial if SΨU = ΨUS for all U ∈ Un or,

equivalently, if Rad(S) = S.
Zhou, Chen, and Dong [9] proved that the Berezin transform “commutes with

the radialization” in the following sense: for every bounded linear operator S acting
in A2

B(Rad(S)) = radB(S).

It follows that S is radial if and only if B(S) is radial. In the one-dimensional case
(i.e., for n = 1) these facts were proved by Zorboska [11].

For each α ∈ Nn we denote by Pα the orthogonal projection onto the one-
dimensional space generated by eα:

Pα(x) := 〈x, eα〉 eα.

Given a bounded sequence λ = (λm)∞m=0 of complex numbers, denote by Rλ the
following operator (radial operator with eigenvalue sequence λ):

Rλ :=
∑
α∈Nn

λ|α|Pα,

where the convergence of the series is understood in the strong operator topology.
The Berezin transform of Rλ was computed in [1, 9]:

(B(Rλ))(z) = (1− |z|2)n+1
∞∑
m=0

2(m+ n)!

m! (n− 1)!
λm |z|2m. (1.1)

Since the function B(Rλ) is radial, the operator Rλ is radial.

Theorem 1.1. Let S be a bounded linear radial operator in A2. Then there exists
a bounded complex sequence λ such that S = Rλ.
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Zhou, Chen, and Dong [9] proved one part of this theorem, namely, that S is
diagonal with respect to the monomial basis. In Section 2 we prove the remaining
part: the eigenvalues of S depend only on the length of the multi-index.

Radial Toeplitz operators on the unit ball

Zhou, Chen, and Dong [9] proved that a Toeplitz operator Tg is radial if and only
if its generating symbol g is radial, i.e., if there exists a function a defined on [0, 1]
such that g(z) = a(|z|) for almost all z ∈ Bn. Then Tg is diagonal with respect
to the orthonormal monomial basis, and the corresponding eigenvalues depend only
on the length of multi-indices. Denote the eigenvalue sequence of such operator by
γn,a:

Tgeα = γn,a(|α|)eα.

An explicit expression of the eigenvalues γn,a(m) in terms of a was found by Grudsky,
Karapetyants and Vasilevski [1] (see also [9]):

γn,a(m) = (m+ n)

∫ 1

0
a(
√
r) rm+n−1 dr, (1.2)

or, changing a variable,

γn,a(k) = 2(m+ n)

∫ 1

0
a(r) r2m+2n−1 dr. (1.3)

Denote by Γn(L∞([0, 1])), or Γn in short, the set of all these eigenvalue sequences,
which are generated by the radial Toeplitz operators with bounded generating func-
tions:

Γn := Γn(L∞([0, 1])) =
{
γn,a : a ∈ L∞([0, 1])

}
. (1.4)

Define γ1,a and Γ1 by (1.3) and (1.4) with n = 1:

γ1,a(k) = 2(k + 1)

∫ 1

0
a(r) r2k+1 dr, (1.5)

Γ1 := Γ1(L
∞([0, 1])) =

{
γ1,a : a ∈ L∞([0, 1])

}
. (1.6)

Denote by d1(N) the set of all bounded sequences x = (xj)j∈N satisfying the condi-
tion

sup
k∈N

(
(k + 1)(∆x)k

)
< +∞,

where (∆x)k = xk+1 − xk.
Then the C∗-algebra generated by radial Toeplitz operators with bounded gen-

erated symbols is isometrically isomorphic to the C∗-algebra generated by Γn.

Theorem 1.2 (Suárez [8]). The C∗-algebra generated by Γ1 coincides with the topo-
logical closure of Γ1 in `∞(N), being the topological closure of d1(N) in `∞(N).
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Slowly oscillating sequences

Denote by SO(N) the set of all bounded sequences that slowly oscillate in the sense
of Schmidt [5] (see also Landau [2] and Stanojević and Stanojević [6]):

SO(N) :=
{
x ∈ `∞ : lim

j+1
k+1
→1
|xj − xk| = 0

}
.

In other words, SO(N) consists of all bounded functions N→ C that are uniformly
continuous with respect to the “logarithmic metric” ρ(j, k) := | ln(j+1)− ln(k+1)|.
In Section 3 we give some properties and equivalent definitions of the C∗-algebra
SO(N).

In Section 4 we prove that the C∗-algebra generated by Γn does not actually
depend on n. Applying Theorem 1.2 and some standard approximation techniques
(de la Vallée-Poussin means) we obtain the main result of the paper.

Theorem 1.3. For each n the C∗-algebra generated by Γn coincides with the topo-
logical closure of Γn in `∞ and is equal to SO(N).

As shown by Grudsky, Karapetyants and Vasilevski [1], if a ∈ L1([0, 1], r2n−1dr)
and the sequence γn,a is bounded, then γn,a(m + 1) − γn,a(m) → 0. At the same
time, in this situation γn,a does not necessarily belong to SO(N). The next result is
proved in Section 5.

Theorem 1.4. There exists a function a ∈ L1([0, 1], r dr) such that γn,a ∈ `∞(N) \
SO(N).

That is, a bounded Toeplitz operator having unbounded defining symbol does not
necessarily belong to the C∗-algebra generated by Toeplitz operators with bounded
defining symbols.

2 Diagonalization of radial operators in the monomial
basis

Lemma 2.1 (Zhou, Chen, and Dong [9]). Let S : A2 → A2 be a bounded radial
operator and α be a multi-index. Then eα is an eigenfunction of S, i.e., 〈Seα, eβ〉 = 0
for every multi-index β different from α.

Proof. For a reader convenience we give here a proof, slightly different from [9].
Choose an index j ∈ {1, . . . , n} such that αj 6= βj and a complex number t such
that |t| = 1 and tαj 6= tβj . For example, put

t = eiφ where φ =
π

|αj − βj |
.

Denote by U the diagonal matrix with (j, j)st entry equal to t−1 and all other
diagonal entries equal to 1:

U = diag(1, . . . , 1, t−1︸︷︷︸
jst position

, 1, . . . , 1).
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Then U is a unitary matrix, ΨUeα = tαjeα, and

tαj 〈Seα, eβ〉 = 〈SΨUeα, eβ〉 = 〈ΨUSeα, eβ〉 = 〈Seα,ΨU∗eβ〉 = tβj 〈Seα, eβ〉.

Since tαj 6= tβj , it follows that 〈Seα, eβ〉 = 0.

Lemma 2.2 (Berezin transform of basic projections). Let α ∈ Nn and z ∈ B. Then

B(Pα)(z) = (1− |z|2)n+1qα(z),

where qα : B → C is the square of the absolute value of eα:

qα(z) = |eα(z)|2 =
(n+ |α|)!
n!α!

|zα|2.

Proof. We calculate PαKz for an arbitrary z ∈ B:

PαKz = Pα

 ∑
β∈Nn

eβ(z) eβ

 = eα(z) eα.

The reproducing property of Kz implies that 〈eα,Kz〉 = eα(z). Therefore

B(Pα)(z) =
1

Kz(z)
〈PαKz,Kz〉 = (1− |z|2)n+1〈eα(z) eα,Kz〉

= (1− |z|2)n+1|eα(z)|2.

Lemma 2.3. For each m ∈ N, the function z 7→ |z|2m is n
m+n times the arithmetic

mean of the functions qα with |α| = m:

|z|2m =
m!n!

(m+ n)!

∑
|α|=m

qα(z) =
n

m+ n

m! (n− 1)!

(m+ n− 1)!

∑
|α|=m

qα(z).

Proof. Apply the multinomial theorem and the definition of qα:

|z|2m =

 n∑
j=1

|zj |2
m

=
∑
|α|=m

m!

α!

n∏
j=1

|zj |2αj

=
∑
|α|=m

m!

α!
|zα|2 =

m!n!

(m+ n)!

∑
|α|=m

qα(z).

Lemma 2.4. Let α ∈ Nn. Then for all z ∈ B,

rad(qα)(z) =
n+ |α|
n

|z|2|α|.
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Proof. Express the integration over Un through the integration over S2n−1:

rad(qα)(z) =

∫
Un

n+ |α|!
n!α!

|(Uz)α|2 dH(U) =
n+ |α|!
n!α!

|z|2|α|
∫
S2n−1

|ζα|2 dσ(ζ).

The value of the latter integral is well known (e.g., see [3, Proposition 1.4.9]):∫
S2n−1

|ζα|2 dσ(ζ) =
(n− 1)!α!

(n− 1 + |α|)!
.

Lemma 2.5 (radialization of basic projections). Let α ∈ Nn. Then the radialization
of Pα is the arithmetic mean of all Pβ with |β| = |α|:

Rad(Pα) =
(n− 1)! |α|!

(n− 1 + |α|)!
∑
β∈Nn
|β|=|α|

Pβ. (2.1)

Proof. We shall prove that both sides of (2.1) have the same Berezin transform, then
(2.1) will follow from the injectivity of the Berezin transform. We use the fact the
Berezin transform “commutes with the radialization” [9], and apply then Lemmas
2.2 and 2.4:

B(Rad(Pα))(z) = rad(B(Pα))(z) = (1− |z|2)n+1 rad(qα)(z)

=
n+ |α|
n

|z|2|α|(1− |z|2)n+1.

On the other hand, by Lemmas 2.4 and 2.3,

(n− 1)! |α|!
(n− 1 + |α|)!

∑
|β|=|α|

B(Pβ)(z) = (1− |z|2)n+1 (n− 1)! |α|!
(n− 1 + |α|)!

∑
|β|=|α|

qβ(z)

=
n+ |α|
n

|z|2|α| (1− |z|2)n+1.

Lemma 2.6 (radialization of a diagonal operator). Let (cα)α∈Nn be a bounded family
of complex numbers. Consider the operator S : A2 → A2 given by

S =
∑
α∈Nn

cαPα.

Then

Rad(S) =

∞∑
m=0

 m! (n− 1)!

(m+ n− 1)!

∑
|β|=m

cβ

 ∑
|α|=m

Pα

 .

Proof. Follows from Lemma 2.5 and the fact that the sum of a converging serie of
mutually orthogonal vectors does not depend on the order of summands.
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Proof of Theorem 1.1. Let S be a bounded linear radial operator in A2. By Lemma
2.1,

S =
∑
α∈Nn

cαPα.

Since Rad(S) = S, it follows from Lemma 2.6 that the coefficients cα depend only
on |α|. Defining λm equal to cα for some α with |α| = m, we obtain

S =

∞∑
m=0

λm

 ∑
|α|=m

Pα

 = Rλ.

3 Slowly oscillating sequences

Definition 3.1 (logarithmic metric on N). Define ρ : N× N→ [0,+∞) by

ρ(j, k) :=
∣∣ln(j + 1)− ln(k + 1)

∣∣.
The function ρ is a metric on N because it is obtained from the usual metric

d : R×R→ [0,+∞), d(t, u) := |t−u|, via the injective function N→ R, j 7→ ln(j+1).

Definition 3.2 (modulus of continuity of a sequence with respect to the logarithmic
metric). Given a complex sequence x = (xj)j∈N, define ωρ,x : [0,+∞)→ [0,+∞] by

ωρ,x(δ) := sup
{
|xj − xk| : j, k ∈ N, ρ(j, k) ≤ δ

}
.

Definition 3.3 (slowly oscillating sequences). Denote by SO(N) the set of the
bounded sequences that are uniformly continuous with respect to the logarithmic
metric:

SO(N) =
{
λ ∈ `∞(N) : lim

δ→0+
ωρ,λ(δ) = 0

}
.

Note that the class SO(N) plays an important role in Tauberian theory, see
Landau [2], Schmidt [5, § 9], Stanojević and Stanojević [6].

For every sequence x the function ωρ,x : [0,+∞)→ [0,+∞] is increasing (in the
non-strict sense). Therefore the condition limδ→0+ ωρ,x(δ) = 0 is equivalent to the
following one: for all ε > 0 there exists a δ > 0 such that ωρ,x(δ) < ε.

The same class SO(N) can be defined using another special metric ρ1 on N:

Definition 3.4. Define ρ1 : N× N→ [0,+∞) by

ρ1(j, k) =
|j − k|

max(j + 1, k + 1)
= 1− min(j + 1, k + 1)

max(j + 1, k + 1)
.

Proposition 3.5. ρ1 is a metric on N.

Proof. Clearly ρ1 is non-negative, symmetric, and ρ1(j, k) = 0 only if j = k. We
have to prove that for all j, k, p ∈ N

ρ1(j, p) + ρ1(p, k)− ρ1(j, k) ≥ 0. (3.1)
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Denote the left-hand side of (3.1) by Λ(j, k, p). Since Λ(j, k, p) is symmetric with
respect to j and k, assume without loss of generality that j ≤ k. If j ≤ p ≤ k, then

Λ(j, k, p) =

(
1− j + 1

p+ 1

)
+

(
1− p+ 1

k + 1

)
−
(

1− j + 1

k + 1

)
=
p− j
p+ 1

− p− j
k + 1

=
(p− j)(k − p)
(k + 1)(p+ 1)

≥ 0.

If j ≤ k < p, then

Λ(j, k, p) =
(p− k)(j + k + 2)

(k + 1)(p+ 1)
≥ 0.

If p < j ≤ k, then

Λ(j, k, p) =
(j − p)(j + k + 2)

(j + 1)(k + 1)
≥ 0.

Proposition 3.6 (relations between ρ and ρ1).

1. For all j, k ∈ N,

ρ1(j, k) ≤ ρ(j, k). (3.2)

2. For all j, k ∈ N satisfying ρ1(j, k) ≤ 1
2 ,

ρ(j, k) ≤ 2 ln(2)ρ1(j, k). (3.3)

Proof. Since the functions ρ and ρ1 are symmetric and vanish on the diagonal
(ρ(j, j) = ρ1(j, j) = 0), consider only the case j < k. Denote k+1

j+1 − 1 by t, then

ρ(j, k) = ln(1 + t), ρ1(j, k) = 1− 1

1 + t
=

t

1 + t
.

Define f : (0,+∞)→ (0,+∞) by

f(t) :=
ln(1 + t)

1− 1
1+t

.

Then

f ′(t) =
t− ln(1 + t)

t2
> 0,

and thus f is strictly increasing on (0,+∞). Since limt→0+ f(t) = 1 and f(1) =
2 ln(2), we see that f(t) > 1 for all t > 0 and f(t) ≤ 2 ln(2) for all t ∈ (0, 1].
Substituting t by k+1

j+1 − 1 we obtain (3.2) and (3.3).

Corollary 3.7. The set SO(N) can be defined using the metric ρ1 instead of ρ:

SO(N) =
{
λ ∈ `∞(N) : lim

δ→0+
sup

ρ1(j,k)≤δ
|λj − λk| = 0

}
.

Let us mention some simple properties of SO(N).
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Proposition 3.8. SO(N) is a closed subalgebra of the C∗-algebra `∞(N).

Proof. It is a general fact that the set of the uniformly continuous functions on some
metric space M is a closed subalgebra of the C∗-algebra of the bounded continuous
functions on M . In our case M = (N, ρ). Since

ωρ,f+g ≤ ωρ,f + ωρ,g, ωρ,λf = |λ|ωρ,f ,

ωρ,fg ≤ ωρ,f‖g‖∞ + ωρ,g‖f‖∞, ωρ,f = ωρ,f ,

the set SO(N) is closed with respect to the algebraic operations. The topological
closeness of SO(N) in `∞(N) follows from the inequality

ωρ,f (δ) ≤ 2‖f − g‖∞ + ωρ,g(δ).

Proposition 3.9 (comparison of SO(N) to c(N)). The set of the converging se-
quences c(N) is a proper subset of SO(N).

Proof. 1. Denote by N := N ∪ {∞} the one-point compactification (Alexandroff
compactification) of N. The topology on N can be induced by the metric

dN(j, k) :=

∣∣∣∣ j

j + 1
− k

k + 1

∣∣∣∣ .
If σ ∈ c(N), then σ is uniformly continuous with respect to the metric dN, but dN is
less or equal than ρ:

dN(j, k) =
|j − k|

(j + 1)(k + 1)
≤ |j − k|

max(j + 1, k + 1)
= ρ1(j, k) ≤ ρ(j, k).

2. The sequence x = (xj)j∈N with xj = cos(ln(j+1)) does not converge but belongs
to SO(N) since∣∣xj − xk∣∣ =

∣∣cos(ln(j + 1))− cos(ln(k + 1))
∣∣ ≤ ∣∣ln(j + 1)− ln(k + 1)

∣∣ = ρ(j, k).

We define now the left and right shifts of a sequence. Given a complex sequence
x = (xj)j∈N, define the sequences τL(x) and τR(x) as follows:

τL(x) := (x1, x2, x3, . . .), τR(x) := (0, x0, x1, . . .).

More formally,

τL(x)j := xj+1; τR(x)j :=

{
0, j = 0;

xj−1, j ∈ {1, 2, 3, . . .}.

Note that τL(τR(x)) = x for every sequence x.
Both τL and τR are bounded linear operators on `∞(N). In the following two

propositions we show that SO(N) is an invariant subspace of each one of these
operators.
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Proposition 3.10. For every x ∈ SO(N), τL(x) ∈ SO(N).

Proof. The image of τL(x) is a subset of the image of x, therefore ‖τL(x)‖ ≤ ‖x‖.
If δ > 0, j, k ∈ N, j < k and ρ(j, k) ≤ δ, then

ρ(j + 1, k + 1) = ln
k + 2

j + 2
= ln

k + 1

j + 1
+ ln

(
1 +

1

k + 1

)
− ln

(
1 +

1

j + 1

)
< ln

k + 1

j + 1
= ρ(j, k) ≤ δ.

It follows that ωρ,τL(x)(δ) ≤ ωρ,x(δ) and lim
δ→0+

ωρ,τL(x)(δ) = 0.

Proposition 3.11. For every x ∈ SO(N), τR(x) ∈ SO(N).

Proof. The sequences x and τR(x) have the same image up to one element zero:

{τR(x)j : j ∈ N} = {xj : j ∈ N} ∪ {0}.

Therefore ‖τR(x)‖∞ = ‖x‖∞.

2. Let δ ∈
(
0, 13
)
, j, k ∈ N, j < k and ρ(j, k) ≤ δ. Then j ≥ 1, k ≥ 2, and

ρ1(j − 1, k − 1) =
k − j
k

=
k + 1

k
· (k + 1)− (j + 1)

k + 1
≤ 3

2
ρ1(j, k).

Applying Proposition 3.6 we see that

ρ1(j − 1, k − 1) ≤ 3

2
ρ(j, k) =

3

2
δ ≤ 1

2

and

ρ(j − 1, k − 1) ≤ 2 ln(2)ρ1(j − 1, k − 1) ≤ 2 ln(2)
3

2
δ = 3 ln(2)δ.

Thus for every δ ∈
(
0, 13
)
,

ωρ,τR(x)(δ) ≤ ωρ,x(3 ln(2)δ).

Therefore lim
δ→0+

ωρ,τR(x)(δ) = 0.

4 Γn is a dense subset of SO(N)

First we prove that Γn is contained in SO(N).

Proposition 4.1. Let a ∈ L∞([0, 1]). Then γn,a ∈ SO(N). More precisely,

‖γn,a‖∞ ≤ ‖a‖∞, (4.1)

and for all j, k ∈ N, ∣∣γn,a(j)− γn,a(k)
∣∣ ≤ 2‖a‖∞ρ(j, k). (4.2)

12



Proof. The inequality (4.1) follows directly from (1.3):

|γn,a(j)| ≤ 2(n+ j)

∫ 1

0
r2n+2j−1‖a‖∞ dr = ‖a‖∞.

The proof of (4.2) is based on an idea communicated to us by K. M. Esmeral Garćıa.
Since both sides of (4.2) are symmetric with respect to the indices j and k, without
loss of generality we consider the case j < k. First factorize a(r) and bound it by
‖a‖∞:

∣∣γn,a(j)− γn,a(k)
∣∣ =

∣∣∣∣∫ 1

0

(
(n+ j)r2n+2j−1 − (n+ k)r2n+2k−1)a(r) dr

∣∣∣∣ (4.3)

≤ ‖a‖∞
∫ 1

0

∣∣(n+ j)r2n+2j−1 − (n+ k)r2n+2k−1∣∣ dr. (4.4)

Denote by r0 the unique solution of the equation (n+j)r2n+2j−1−(n+k)r2n+2k−1 = 0
on the interval (0, 1):

r0 =

(
n+ j

n+ k

) 1
2(k−j)

.

The function r 7→ (n + j)r2n+2j−1 − (n + k)r2n+2k−1 takes positive values on the
interval (0, r0) and negative values on the interval (r0, 1). Dividing the integral (4.4)
on two parts by the point r0, we obtain:∣∣γn,a(j)− γn,a(k)

∣∣ ≤ 2‖a‖∞
(
r2n+2j
0 − r2n+2k

0

)
= 2‖a‖∞r2n+2j

0 ρ1(j, k).

Since r0 < 1 and ρ1(j, k) ≤ ρ(j, k), the inequality (4.2) follows.

Definition 4.2. Denote by d1(N) the set of the bounded sequences x such that

sup
j∈N

(
(j + 1)|xj+1 − xj |

)
< +∞.

Proposition 4.3. d1(N) is a proper subset of SO(N).

Proof. 1. Let x ∈ d1(N) and

M = sup
j∈N

(
(j + 1)|xj+1 − xj |

)
.

Then for all j, k ∈ N with j < k we have

|xk − xj | ≤
k−1∑
q=j

|xq+1 − xq| ≤M
k−1∑
q=j

1

q + 1
≤ 2M

k−1∑
q=j

1

q + 2

= 2M

k−1∑
q=j

ρ1(q, q + 1) ≤ 2M

k−1∑
q=j

ρ(q, q + 1) = 2Mρ(j, k).

Therefore d1(N) is contained in SO(N).
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2. Consider the sequence

xj := sin
πblog2(j + 2)c√

log2(j + 2)
.

For every j and k with k > j,

|xk − xj | ≤
πblog2(k + 2)c√

log2(k + 2)
− πblog2(j + 2)c√

log2(j + 2)

≤ π log2(k + 2)√
log2(k + 2)

− π(log2(j + 2)− 1)√
log2(j + 2)

= π
(√

log2(k + 2)−
√

log2(j + 2)
)

+
π√

log2(j + 2)

=
π log2

k+2
j+2√

log2(k + 2) +
√

log2(j + 2)
+

π√
log2(j + 2)

.

Thus x ∈ SO(N). On the other hand, if j = 2k
2 − 3, then

|xj+1 − xj | = |xj | =

∣∣∣∣∣sin
(

π(k2 − 1)√
log2(2

k2 − 1)

)∣∣∣∣∣ =

∣∣∣∣∣sin
(
kπ − π(k2 − 1)√

log2(2
k2 − 1)

)∣∣∣∣∣ .
Appying the inequality | sin(t)| ≥ 2|t|

π , which holds for all t with |t| ≤ π
2 , we obtain:

|xj+1 − xj | ≥ 2

(
k − (k2 − 1)√

log2(2
k2 − 1)

)
≥ 2

(
k −

√
k2 − 1

)
≥ 1

k
=

1√
log2(j + 3)

.

Therefore x /∈ d1(N).

Lemma 4.4. Let x ∈ `∞(N) and δ ∈ (0, 1). Denote by y the sequence of the de la
Vallée-Poussin means of x:

yj =
1

1 + bjδc

j+bjδc∑
k=j

xk. (4.5)

Then y ∈ d1(N) and

‖y − x‖∞ ≤ ωρ,x(δ). (4.6)

Proof. Note that for all j ∈ N, the sum in the right-hand side of (4.5) contains
1 + bjδc terms. Therefore

|yj | ≤
1

1 + bjδc

j+bjδc∑
k=j

‖x‖∞ = ‖x‖∞.
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For j ∈ N, let us estimate the difference |yj+1 − yj |:

|yj+1 − yj | =

∣∣∣∣∣∣ 1

1 + b(j + 1)δc

j+b(j+1)δc∑
k=j

xk −
1

1 + bjδc

j+bjδc∑
k=j

xk

∣∣∣∣∣∣
≤ b(j + 1)δc − bjδc

(1 + b(j + 1)δ)(1 + bjδc)

j+b(j+1)δc∑
k=j

|xk|+
|xj+b(j+1)δc|

1 + b(j + 1)δc

≤ ‖x‖∞(bjδc+ 1)

(j + 1)δ(1 + bjδc)
+
‖x‖∞

(j + 1)δ

=
‖x‖∞

(j + 1)δ
.

Thus y ∈ d1(N). Let us prove (4.6). If j ≤ k ≤ j + bjδc, then

ρ(j, k) = ln
k + 1

j + 1
≤ ln

k

j
≤ ln(1 + δ) ≤ δ.

Therefore

|yj − xj | ≤
1

1 + bjδc

j+bjδc∑
k=j

|xk − xj | ≤ ωρ,x(δ).

Proposition 4.5. d1(N) is a dense subset of SO(N).

Proof. Let ε > 0. Using the fact that ωρ,x(δ) → 0 as δ → 0, choose a δ > 0 such
that ωρ,x(δ) < ε. Define y by (4.5). Then y ∈ d1(N) and ‖x − y‖∞ < ε by Lemma
4.4.

Theorem 1.3 follows from Proposition 4.5 and Theorem 1.2:

Proposition 4.6. Γ1 is a dense subset of SO(N).

Proof. Proposition 4.1 implies that Γ1 is contained in SO(N). Let x ∈ SO(N) and
ε > 0. Applying Proposition 4.5 find a sequence y ∈ d1(N) such that

‖y − x‖∞ <
ε

2
.

Using Theorem 1.2 we find a function a ∈ L∞([0, 1]) such that ‖γ1,a − y‖∞ < ε
2 .

Then

‖γ1,a − x‖∞ ≤ ‖γ1,a − y‖∞ + ‖y − x‖∞ < ε.

Lemma 4.7. Let a ∈ L∞([0, 1]). Then γn,a = τn−1L (γ1,a).

Proof. Follows directly from the definitions of γn,a and γ1,a, see (1.3) and (1.5).

Proposition 4.8. Γn is a dense subset of SO(N).
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Proof. By Proposition 4.1, Γn is a subset of SO(N).
Let x ∈ SO(N) and ε > 0. Denote τn−1R (x) by y. By Proposition 3.11, y ∈ SO(N).

Using Proposition 4.6 find a function a ∈ L∞([0, 1]) such that ‖y−γ1,a‖∞ < ε. Then
apply Lemma 4.7:

‖x−γn,a‖∞ = ‖τn−1L (y)−τn−1L (γ1,a)‖∞ = ‖τn−1L (y−γ1,a)‖∞ ≤ ‖y−γ1,a‖∞ < ε.

We finish this section with an important observation. The results stated up to
this moment do not take into account the multiplicities of the eigenvalues. In this
connection we recall that for each bounded radial operator Rλ on A2(Bn) with the
eigenvalue sequence λ ∈ `∞(N), the equality

Rλeα = λpeα

holds for all multi-indices α ∈ Nn satisfying |α| = p, and there are
(
n+p−1
n−1

)
such

multi-indices.
As was mentioned, for each natural number n the C∗-algebra generated by

Toeplitz operators on A2(Bn) with bounded radial symbols is isomorphic and iso-
metric to the C∗-algebra of multiplication operators Rλ on `2(N) whose eigenvalue
sequences belong to SO(N), and thus its C∗ structure does not depend on n. At the
same time these algebras, when n is varied, are quite different if we count multiplic-
ities of eigenvalues, that is when the operators forming the algebra are considered
by their action on the basis elements of the corresponding Hilbert space A2(Bn).

Let us consider in more detail sequences of eigenvalues with multiplicities. For-
mula for the rising sum of binomial coefficients states that

p∑
m=0

(
n+m− 1

n− 1

)
=

(
n+ p− 1

n

)
.

Now, for every j ∈ N there exists a unique p in N such that(
n+ p− 1

n

)
≤ j <

(
n+ p

n

)
.

Denote this p by πn(j), and say that the index j is located on the p-st “level”.
Given a sequence λ ∈ `∞, define Φn(λ) as the sequence obtained from λ by

repeating each λp according to its multiplicity. That is,

Φn(λ) :=
( (n+p−1

n ) elements︷ ︸︸ ︷
λ0︸︷︷︸

(n−1
n−1)
times

, λ1︸︷︷︸
( n
n−1)
times

, λ2︸︷︷︸
(n+1
n−1)
times

, λ3︸︷︷︸
(n+2
n−1)
times

, . . . , λp︸︷︷︸
(n+p−1
n−1 )
times

, . . .
)
.

Since the isometric homomorphism Φn of `∞(N) is injective, the C∗-algebra gener-
ated by the set {Φn(γn,a) : a ∈ L∞[0, 1]} coincides with Φn(SO(N)), that is, with
the C∗-algebra obtained from SO(N) by applying the mapping Φn.
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Note that for all p, q with p < q the following estimates hold:

ln
q + 1

p+ 1
≤ ln

(
n+ q

n

)
− ln

(
n+ p

n

)
≤ n ln

q + 1

p+ 1
,

which implies that Φn(SO(N)) coincides with the C∗-algebra SOrep,n(N), a subal-
gebra SO(N), which consists of all sequences having the same elements on each
“level”:

SOrep,n(N) :=
{
µ ∈ SO(N) : if πn(j) = πn(k), then µj = µk

}
.

That is, the described above eigenvalue repetitions do not change in essence a slowly
oscillating behavior of sequences.

5 Example

In this section we construct a bounded sequence λ = (λj)j∈N such that λ = γn,a
for a certain function a ∈ L1([0, 1], r dr) but λ /∈ SO(N). This implies that the
corresponding radial Toeplitz operator is bounded, but it does not belong to the
C∗-algebra generated by radial Toeplitz operators with bounded symbols.

Proposition 5.1. Define f : {z ∈ C : <(z) ≥ 0} → C by

f(z) :=
1

z + n
exp

(
i

3π
ln2(z + n)

)
, (5.1)

where ln is the principal value of the natural logarithm (with imaginary part in
(−π, π]). Then there exists a unique function A ∈ L1(R+, e

−u du) such that f is the
Laplace transform of A:

f(z) =

∫ +∞

0
A(u)e−zu dz.

Proof. For every z ∈ C with <(z) ≥ 0 we can write ln(z+n) as ln |z+n|+i arg(z+n)
with −π

2 < arg(z + n) < π
2 . Then

|f(z)| = 1

|z + n|

∣∣∣∣exp

(
i

3π

(
ln |z + n|+ i arg(z + n)

)2)∣∣∣∣
=

1

|z + n|
exp

(
−2 arg(z + n)

3π
ln |z + n|

)
=

1

|z + n|1+
2 arg(z+n)

3π

.

Since |z + n| ≥ 1 and −1
3 < −

2 arg(z+n)
3π < 1

3 ,

|f(z)| ≤ 1

|z + n|2/3
.
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Therefore for every x > 0,∫
R
|f(x+ iy)|2 dy ≤

∫
R

dy

((x+ n)2 + y2)2/3
<

∫
R

dy

(1 + y2)2/3
< +∞,

and f belongs to the Hardy class H2 on the half-plane {z ∈ C : <(z) > 0}. By
Paley–Wiener theorem (see, for example, Rudin [4, Theorem 19.2]), there exists a
function A ∈ L2(0,+∞) such that for all x > 0

f(x) =

∫ +∞

0
A(u)e−ux du.

The uniqueness of A follows from the injective property of the Laplace transform.
Applying Hölder’s inequality we easily see that A ∈ L1(R+, e

−u du):∫ +∞

0
|A(u)| e−u du ≤ ‖A‖2

(∫ +∞

0
e−2u du

)1/2

=
‖A‖2√

2
.

Proposition 5.2. The sequence λ = (λj)j∈N, where

λj := exp

(
i

3π
ln2(j + n)

)
, (5.2)

belongs to `∞(N) \ SO(N). Moreover there exists a function a ∈ L1([0, 1], r dr) such
that λ = γn,a.

Proof. Since |λj | = 1 for all j ∈ N, the sequence λ is bounded. Let A be the function
from Proposition 5.1. Define a : [0, 1]→ C by

a(r) = A(−2 ln r).

Then ∫ 1

0
|a(r)| r dr =

1

2

∫ 1

0
|a(
√
t)| dt =

1

2

∫ 1

0
|A(− ln(t))| dt

=
1

2

∫ +∞

0
|A(u)| e−u du < +∞,

and

γn,a(j) = (j + n)

∫ 1

0
a(
√
r) rj+n−1 dr = (j + n)

∫ 1

0
A(− ln r) rj+n−1 dr

= (j + n)

∫ +∞

0
A(u) e−(j+n)u du = (j + n)f(j + n) = λj .

Let us prove that λ /∈ SO(N). For every j, k ∈ N we have

|λj − λk| =
∣∣∣∣exp

(
i

3π

(
ln2(j + n)− ln2(k + n)

))
− 1

∣∣∣∣ .
18



Replace j by the following function of k:

j(k) := k +

⌊
k + n

ln1/2(k + n)

⌋
.

Then
j(k)− k
k + n

=
1

ln1/2(k + n)
+O

(
1

k + n

)
and

ln(j(k) + n) = ln(k + n) + ln

(
1 +

j(k)− k
k + n

)
= ln(k + n) +

1

ln1/2(k + n)
− 1

2 ln(k + n)
+O

(
1

ln3/2(k + n)

)
.

Denote ln2(j(k) +n)− ln2(k+n) by Lk and consider the asymptotic behavior of Lk
as k →∞:

Lk := ln2(j(k) + n)− ln2(k + n) = −1 + 2 ln1/2(k + n) +O
(

1

ln(k + n)

)
.

Since Lk increases slowly for large k, for every K > 0 there exists an integer k ≥ K
such that Lk + 1 is close enough to an integer multiple of 6π2, say to 6mπ2:

Lk + 1 ≈ 6mπ2.

For such k,

|λj(k) − λk| =
∣∣∣∣exp

(
i

3π
(Lk + 1− 6mπ2)

)
exp

(
− i

3π

)
− 1

∣∣∣∣
≈
∣∣∣∣exp

(
− i

3π

)
− 1

∣∣∣∣ 6= 0.

It means that |λj(k) − λk| does not converge to 0 as k goes to infinity. On the other
hand,

ρ(j(k), k) = ln
j(k) + 1

k + 1
≤ (k + n)

(k + 1) ln1/2(k + n)
→ 0.

It follows that λ /∈ SO(N).
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