Vertical Toeplitz operators on the upper halfplane and logarithmically oscillating functions

Egor Maximenko, joint results with Crispin Herrera Yañez and Nikolai Vasilevski Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, México

2024-04-15, CINVESTAV

Plan

(1) Diagonalization of vertical Toeplitz operators
(2) Log-oscillating functions
(3) Main result
(1) Diagonalization of vertical Toeplitz operators
(2) Log-oscillating functions
3) Main result

Bergman space on the upper halfplane

$$
\Pi:=\{z \in \mathbb{C}: \quad \operatorname{lm}(z)>0\} .
$$

$\mathcal{A}(\Pi):=$ the vector space of all analytic functions on Π.
$\mu_{2}:=$ Lebesgue measure on the plane.
$\mathcal{A}^{2}(\Pi):=\left\{f \in \mathcal{A}(\Pi): \quad\|f\|_{L^{2}\left(\Pi, \mu_{2}\right)}<+\infty\right\}$.
$P: L^{2}\left(\Pi, \mu_{2}\right) \rightarrow L^{2}\left(\Pi, \mu_{2}\right)$ orthogonal projection whose image is $\mathcal{A}^{2}(\Pi)$.

Vertical Toeplitz operators

$$
\mathbb{R}_{+}:=(0,+\infty) .
$$

Given a in $L^{\infty}\left(\mathbb{R}_{+}\right)$, define A in $L^{\infty}(\Pi)$ by

$$
A(z):=a(\operatorname{lm}(z)) .
$$

$T_{a}:=$ Toeplitz operator acting in $\mathcal{A}^{2}(\Pi)$ by

$$
T_{a} f:=P(A f)
$$

Isometric isomorphism that diagonalizes all vertical operators

Isometric isomorphism $R: \mathcal{A}^{2}(\Pi) \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$,

$$
(R f)(\xi):=\frac{\sqrt{x}}{\sqrt{\pi}} \int_{\Pi} f(w) \mathrm{e}^{-i \bar{w} \xi} \mathrm{~d} \mu_{2}(w)
$$

Its inverse:

$$
\left(R^{*} g\right)(w)=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}_{+}} g(\xi) \sqrt{\xi} \mathrm{e}^{i w \xi} \mathrm{~d} \xi
$$

Diagonalization of vertical Toeplitz operators

For every a in $L^{\infty}\left(\mathbb{R}_{+}\right), \quad R T_{a} R^{*}=M_{\gamma_{a}}, \quad$ where

$$
\gamma_{a}(\xi):=2 \xi \int_{0}^{+\infty} a(t) \mathrm{e}^{-2 \xi t} \mathrm{~d} t
$$

It is easy to see that $\gamma_{a} \in C_{b}\left(\mathbb{R}_{+}\right)$.

圊 Vasilevski (1999):
On the structure of Bergman and poly-Bergman spaces.

Natural question (by Nikolai Vasilevski)

Describe the C^{*}-subalgebra of $C_{b}\left(\mathbb{R}_{+}\right)$generated by

$$
G:=\left\{\gamma_{a}: a \in L^{\infty}\left(\mathbb{R}_{+}\right)\right\} .
$$

Plan

(1) Diagonalization of vertical Toeplitz operators

(2) Log-oscillating functions
3) Main result

Log-distance on the positive halfline

Define $\rho: \mathbb{R}_{+}^{2} \rightarrow[0,+\infty)$,

$$
\rho(x, y):=|\log (x)-\log (y)| .
$$

So, log is an isometry from $\left(\mathbb{R}_{+}, \rho\right)$ onto $\left(\mathbb{R}, d_{\mathbb{R}}\right)$.

Measurer of uniform continuity with respect to ρ

"Modulus of continuity with respect to ρ "

Given f in $C_{b}\left(\mathbb{R}_{+}\right)$and $\delta>0$,

$$
\omega_{f}(\delta):=\sup \left\{|f(x)-f(y)|: \quad x, y \in \mathbb{R}_{+}, \quad \rho(x, y) \leq \delta\right\} .
$$

Log-oscillating functions

"Very slowly oscillating functions"

Bounded functions $\mathbb{R}_{+} \rightarrow \mathbb{C}$ that are uniformly continuous wrt ρ :

$$
C_{b, u}\left(\mathbb{R}_{+}, \rho\right):=\left\{f \in C_{b}\left(\mathbb{R}_{+}\right): \quad \lim _{\delta \rightarrow 0} \omega_{f}(\delta)=0\right\}
$$

$f \in C_{b, u}\left(\mathbb{R}_{+}, \rho\right) \Longleftrightarrow f \circ \exp \in C_{b, u}(\mathbb{R})$.
$C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$ is a C^{*}-subalgebra of $C_{b}\left(\mathbb{R}_{+}\right)$.

Proposition (functions γ_{a} are log-oscillating)

Let $a \in L^{\infty}\left(\mathbb{R}_{+}\right)$. Then $\gamma_{a} \in C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$.
More precisely, γ_{a} is Lipschitz-continuous with respect to ρ :

$$
\omega_{\gamma_{a}}(\delta) \leq 2 \delta .
$$

Proposition (functions γ_{a} are log-oscillating)

Let $a \in L^{\infty}\left(\mathbb{R}_{+}\right)$. Then $\gamma_{a} \in C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$.
More precisely, γ_{a} is Lipschitz-continuous with respect to ρ :

$$
\omega_{\gamma_{\mathrm{a}}}(\delta) \leq 2 \delta .
$$

Beginning of the proof (idea by Kevin Esmeral García):

$$
\left|\gamma_{a}(x)-\gamma_{a}(y)\right| \leq\|a\|_{\infty} \int_{0}^{+\infty}|\underbrace{2 v x \mathrm{e}^{-2 v x}-2 v y \mathrm{e}^{-2 v y}}_{E_{x, y}(v)}| \frac{\mathrm{d} v}{v} .
$$

$E_{x, y}(v)$ changes its sign at $\quad v_{0}=\frac{\log (y)-\log (x)}{2(y-x)}$.

Plan

(1) Diagonalization of vertical Toeplitz operators

(2) Log-oscillating functions
(3) Main result

Main result

Recall that G is the set of the spectral functions:

$$
G:=\left\{\gamma_{a}: a \in L^{\infty}\left(\mathbb{R}_{+}\right)\right\} .
$$

Theorem

G is a dense subset of $C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$:

$$
\operatorname{clos}_{C_{b}\left(\mathbb{R}_{+}\right)}(G)=C_{b, u}\left(\mathbb{R}_{+}, \rho\right) .
$$

Mellin convolution (convolution over \mathbb{R}_{+})

\mathbb{R}_{+}with the standard multiplication and usual topology is a locally compact abelian group.

The corresponding Haar measure ν is given by $\mathrm{d} \nu(x)=\frac{\mathrm{d} x}{x}$.
Given f, g in $L^{1}\left(\mathbb{R}_{+}, \nu\right)$,

$$
(f * g)(x):=\int_{0}^{+\infty} f(y) g\left(\frac{x}{y}\right) \frac{\mathrm{d} y}{y} .
$$

A Dirac sequence in $L^{1}\left(\mathbb{R}_{+}, \nu\right)$

$$
\psi_{n}(s):=\frac{1}{\mathrm{~B}(n, n)} \frac{s^{n}}{(1+s)^{2 n}}
$$

Proposition

$\left(\psi_{n}\right)_{n \in \mathbb{N}}$ is a Dirac sequence:
(1) $\psi_{n} \geq 0$;
(2) $\left\|\psi_{n}\right\|_{L^{1}\left(\mathbb{R}_{+}, \nu\right)}=1$;
(3) for every $\delta>0$,

$$
\lim _{n \rightarrow \infty} \int_{\rho(s, 1)>\delta} \psi_{n}(s) \frac{\mathrm{d} s}{s}=0
$$

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Plots of ψ_{n}

Elements of $C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$ can be approximated by convolutions

Proposition

Let $\sigma \in C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$. Then

$$
\lim _{n \rightarrow \infty}\left\|\sigma * \psi_{n}-\sigma\right\|_{\infty}=0 .
$$

It is a known fact about uniformly continuous functions and Dirac sequences.

Spectral functions as Mellin convolutions

$$
\gamma_{a}(\xi):=2 \xi \int_{0}^{+\infty} a(t) \mathrm{e}^{-2 \xi t} \mathrm{~d} t
$$

Notice that

$$
\gamma_{a}=\widetilde{a} * \varkappa,
$$

where $\widetilde{a}(t):=a(1 / t)$,

$$
\varkappa(t):=2 t \mathrm{e}^{-2 t} .
$$

Function \varkappa is "approximately invertible" in $L^{1}\left(\mathbb{R}_{+}, \nu\right)$

$$
\varkappa(t):=2 t \mathrm{e}^{-2 t} \quad\left(t \in \mathbb{R}_{+}\right) .
$$

Proposition

There exists a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ in $L^{1}\left(\mathbb{R}_{+}, \nu\right)$ such that

$$
\varphi_{n} * \varkappa=\psi_{n} .
$$

We have found an explicit expression for φ_{n} in terms of Laguerre-Sonin polynomials.

Another proof: Wiener division theorem.

Proof of the density

Let $\sigma \in C_{b, u}\left(\mathbb{R}_{+}, \rho\right)$.
Define $a_{n}:=\widetilde{\sigma * \varphi_{n}}$. Then

$$
\gamma_{a_{n}}=\widetilde{a_{n}} * \varkappa=\sigma * \varphi_{n} * \varkappa=\sigma * \varphi_{n} \xrightarrow{c_{b}\left(\mathbb{R}_{+}\right)} \sigma .
$$

Close results and applications

围 Herrera Yañez，Ondrej Hutník，Maximenko（2014）．
Extension to the weighted case．
圊 Maribel Loaiza，Carmen Lozano（2013）．
For vertical Toeplitz operators over the harmonic Bergman space， the spectral functions are

$$
\gamma_{a}^{\text {harm }}(\xi):=\gamma_{a}(|\xi|) .
$$

雷 Herrera Yañez，Maximenko，Vasilevski（2015）．
The spectral functions of radial Toeplitz operators
can be obtained via a discretization of the vertical case．

