Egor Maximenko, list of publications
-
Grudsky, S.M.; Maximenko, E.A.; Soto-González, A.:
Eigenvalues of the laplacian matrices of the cycles with one weighted edge.
Preprint: arXiv:2205.12457 [math.FA].
-
Herrera-Yañez, C.; Maximenko, E.A.; Ramos-Vazquez, G.:
Translation-invariant operators in reproducing kernel Hilbert spaces.
Preprint: arXiv:2109.05879 [math.FA].
-
Esmeral, K.; Feichtinger, H.G.; Hutník, O.; Maximenko, E.A.:
Approximately invertible elements in non-unital normed algebras.
Preprint: arXiv:2106.09103 [math.FA].
-
Grudsky, S.M.; Maximenko, E.A.; Soto-González, A. (2021):
Eigenvalues of tridiagonal Hermitian Toeplitz matrices with perturbations in the off-diagonal corners.
Chapter in the book:
Karapetyants, A.N.; Kravchenko, V.V.; Liflyand, E.; Malonek H.R. (eds.)
Operator Theory and Harmonic Analysis. OTHA 2020.
Springer Proceedings in Mathematics & Statistics, vol. 357. Springer, Cham.
ISBN 978-3-030-77492-9, e-ISBN 978-3-030-77493-6,
DOI: 10.1007/978-3-030-77493-6_11.
Preprint: arXiv:2009.01401 [math.FA].
-
Leal-Pacheco, C.R.; Maximenko, E.A.; Ramos-Vazquez, G. (2021):
Homogeneously polyanalytic kernels on the unit ball and the Siegel domain.
Complex Anal. Oper. Theory 15, 99.
DOI: 10.1007/s11785-021-01145-z.
-
Barrera-Castelán, R.M.; Maximenko, E.A.; Ramos-Vazquez, G. (2021):
Radial operators on polyanalytic weighted Bergman spaces.
Bol. Soc. Mat. Mex. 27, 43.
DOI: 10.1007/s40590-021-00348-w.
-
Alexandersson, P.; González-Serrano, L.A.; Maximenko, E.A.; Moctezuma-Salazar, M.A. (2021):
Symmetric polynomials in the symplectic alphabet and the change of variables
zj = xj + xj−1.
Electron. J. Comb. 28, issue 1, P1.56.
DOI: 10.37236/9354 (open access).
See also tests in Sagemath.
-
Maximenko, E.A.; Tellería-Romero, A.M. (2020):
Radial operators in polyanalytic Bargmann–Segal–Fock spaces.
Chapter in the book:
Bauer, W.; Duduchava, R.; Grudsky, S.; Kaashoek, M. (eds.)
Operator Algebras, Toeplitz Operators and Related Topics,
pp. 277–305.
Book series Operator Theory: Advances and Applications, vol. 279. Birkhäuser, Cham.
ISBN 978-3-030-44650-5, e-ISBN 978-3-030-44651-2,
DOI: 10.1007/978-3-030-44651-2_18.
-
Barrera, M.; Böttcher, A.; Grudsky, S.M.; Maximenko, E.A. (2018):
Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic.
Chapter in the book:
Böttcher, A.; Potts, D.; Stollmann, P.; Wenzel, D. (eds.)
The Diversity and Beauty of Applied Operator Theory,
pp. 51–77.
Book series Operator Theory: Advances and Applications, vol. 268. Birkhäuser, Cham.
DOI: 10.1007/978-3-319-75996-8_2.
-
Böttcher, A.; Bogoya, J.M.; Grudskii, S.M.; Maximenko, E.A. (2017):
Asymptotic formulas for the eigenvalues and eigenvectors of Toeplitz matrices.
Sbornik: Mathematics, 208:11, 1578–1601.
DOI: 10.1070/SM8865.
-
Maximenko, E.A.; Moctezuma-Salazar, M.A. (2017):
Cofactors and eigenvectors of banded Toeplitz matrices: Trench formulas via skew Schur polynomials.
Operators and Matrices 11:4, 1149–1169.
DOI: 10.7153/oam-2017-11-79 (open access).
See also an interactive visualization of Toeplitz minors expressed via skew Schur polynomials.
-
Bogoya, J.M.; Grudsky, S.M.; Maximenko, E.A. (2017):
Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness.
Chapter in the book: Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, pp. 179–212.
Book series Operator Theory: Advances and Applications, vol. 259. Springer International Publishing.
Print ISBN: 978-3-319-49180-6, Online ISBN: 978-3-319-49182-0, Series ISSN: 0255-0156.
DOI: 10.1007/978-3-319-49182-0_11.
-
Hutník, O.; Maximenko, E.A.; Mišková, A. (2016):
Toeplitz localization operators: spectral functions density.
Complex Anal. Oper. Theory,
10:8, 1757–1774.
DOI: 10.1007/s11785-016-0564-1.
-
Esmeral, K.; Maximenko, E.A. (2016):
Radial Toeplitz operators on the Fock space and square-root-slowly oscillating sequences.
Complex Anal. Oper. Theory, 10:7, 1655–1677.
DOI: 10.1007/s11785-016-0557-0.
See also a presentation.
-
Bogoya, J.M.; Böttcher, A.; Maximenko, E.A. (2016):
From convergence in distribution to uniform convergence.
Boletín de la Sociedad Matemática Mexicana, 22:2, 695–710.
DOI: 10.1007/s40590-016-0105-y.
See also an an interactive illustration of the Lévy arcsine law turned inside out.
-
Bogoya, J.M.; Böttcher, A.; Grudsky, S.M.; Maximenko, E.A. (2016):
Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols.
Linear Algebra Appl., 493, 606–637.
DOI: 10.1016/j.laa.2015.12.017.
See also an interactive illustration of the eigenvalues and eigenvectors of Kac–Murdock–Szegő family of Toeplitz matrices.
-
Esmeral, K.; Maximenko, E.A.; Vasilevski, N. (2015):
C*-algebra generated by angular Toeplitz operators on the weighted Bergman spaces over the upper half-plane.
Integr. Equ. Oper. Theory, 83:3, 413–428.
DOI: 10.1007/s00020-015-2243-4.
See a preprint
on ResearchGate
or here.
-
Herrera Yañez, C.; Maximenko, E.A.; Vasilevski, N. (2015):
Radial Toeplitz operators revisited: Discretization of the vertical case.
Integr. Equ. Oper. Theory, 83:1, 49–60.
DOI: 10.1007/s00020-014-2213-2.
See a preprint
on ResearchGate
or here.
-
Bogoya, J.M.; Böttcher, A.; Grudsky, S.M.; Maximenko, E.A. (2015):
Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices.
J. Approx. Theory, 196, 79–100.
DOI: 10.1016/j.jat.2015.03.003.
See also an interactive constructor of examples.
-
Bogoya, J.M.; Böttcher, A.; Grudsky, S.M.; Maximenko, E.A. (2015):
Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols.
J. Math. Anal. Appl., 422:2, 1308–1334.
DOI: 10.1016/j.jmaa.2014.09.057.
-
Esmeral, K.; Maximenko, E.A. (2014):
C*-algebra of angular Toeplitz operators on Bergman spaces over the upper half-plane.
Commun. Math. Anal., 17:2, 151–162.
http://projecteuclid.org/euclid.cma/1418919761.
-
Herrera Yañez, C.; Hutník, O.; Maximenko, E.A. (2014):
Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions.
Comptes Rendus Mathematique, 352:2, 129–132.
DOI: 10.1016/j.crma.2013.12.004.
-
Herrera Yañez, C.; Maximenko, E.A.; Vasilevski, N. (2013):
Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions.
Integr. Equ. Oper. Theory, 77:2, 149–166.
DOI: 10.1007/s00020-013-2081-1.
See a preliminary version
on ResearchGate
or here.
-
Grudsky, S.M.; Maximenko, E.A.; Vasilevski, N.L. (2013):
Radial Toeplitz operators on the unit ball and slowly oscillating sequences.
Commun. Math. Anal., 14:2, 77–94.
http://projecteuclid.org/euclid.cma/1356039033.
See a preprint on ResearchGate
or here.
-
Bogoya, J.M.; Böttcher, A.; Grudsky, S.M.; Maksimenko, E.A. (2012):
Eigenvectors of Hessenberg Toeplitz matrices and a problem by Dai, Geary, and Kadanoff.
Linear Algebra Appl., 436:9, 3480–3492.
DOI: 10.1016/j.laa.2011.12.012 (open access).
-
Böttcher, A; Grudsky, S.M.; Maksimenko, E.A. (2010):
On the structure of the eigenvectors of large Hermitian Toeplitz band matrices.
Chapter in the book: Recent Trends
in Toeplitz and Pseudodifferential Operators, pp. 15–36.
Book series Operator Theory: Advances and Applications, vol. 210. Springer Basel AG.
Print ISBN: 978-3-0346-0547-2. Online ISBN: 978-3-0346-0548-9. Series ISSN: 0255-0156.
DOI: 10.1007/978-3-0346-0548-9_2.
Preprint: http://www.mathematik.tu-chemnitz.de/preprint/2009/PREPRINT_05.html
-
Böttcher, A.; Grudsky, S.M.; Maksimenko, E.A. (2010):
Inside the eigenvalues of certain Hermitian Toeplitz band matrices.
J. Comput. Appl. Math., 233:9, 2245–2264.
DOI: 10.1016/j.cam.2009.10.010 (open access).
-
Böttcher, A.; Grudsky, S.M.; Maksimenko, E.A. (2009):
On the asymptotics of all eigenvalues of Hermitian Toeplitz band matrices.
Doklady Mathematics, 80:2, 662–664.
DOI: 10.1134/S1064562409050081.
-
Böttcher, A.; Grudsky, S.; Maksimenko, E.A.; Unterberger, J. (2009):
The first order asymptotics of the extreme eigenvectors of certain Hermitian Toeplitz matrices.
Integr. Equ. Oper. Theory,
63:2, 165–180.
DOI: 10.1007/s00020-008-1646-x.
-
Böttcher, A.; Grudsky, S.M.; Maksimenko, E.A. (2008):
The Szegö and Avram-Parter theorems for general test functions.
Comptes Rendus Mathematique, 346:13–14, 749–752.
DOI: 10.1016/j.crma.2008.06.002.
-
Böttcher, A.; Grudsky, S.M.; Maksimenko, E.A. (2008):
Pushing the envelope of the test functions in the Szegö and Avram-Parter theorems.
Linear Algebra Appl., 429:1, 346–366.
DOI: 10.1016/j.laa.2008.02.031 (open access).
-
Vasil'ev, V.A.; Maksimenko, E.A.; Simonenko, I.B. (2003):
One Szegö-Widom limit theorem.
Doklady Mathematics, 68:3, 361–362.
See a draft version on ResearchGate
or here.
-
Maximenko, E.A. (2003):
Convolution operators on expanding polyhedra: limits of the norms of inverse operators and pseudospectra.
Sib. Math. J., 44:6, 1027–1038.
DOI: 10.1023/B:SIMJ.0000007478.13348.97.
See a draft version on ResearchGate
or here.
See also MathSciNet,
Scopus,
Scholar Google,
Research Gate,
ORCID,
Publons,
and
Math Genealogy.
In the Web of Knowledge please search by ResearchID = N-8833-2014.
Most of my recent investigations on the eigenvalues of Toeplitz matrices have been made jointly with
- Sergei Grudsky,
- Albrecht Böttcher,
- Johan Manuel Bogoya Ramírez,
- Mario Alberto Moctezuma Salazar,
- Per Alexandersson,
- Luis Angel Gonzalez Serrano (PhD student, ESFM del IPN, Mexico),
- Alejandro Soto González (PhD student, CINVESTAV del IPN, Mexico).
Most of my recent investigations on C*-algebras of operators in Reproducing Kernel Hilbert Spaces have been made jointly with
- Nikolai Vasilevski,
- Ondrej Hutník,
- Kevin Michael Esmeral García,
- Gerardo Ramos Vazquez,
- Crispin Herrera Yañez,
- Christian Rene Leal Pacheco (PdD student, CINVESTAV del IPN, Mexico),
- Roberto Moisés Barrera Castelán (PhD student, ESFM del IPN, Mexico).
Return to my personal page
or to the page of my courses in IPN-ESFM (in simple Spanish).